文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于自主、联网、实时应用的比色传感器的开发。

Development of a Colorimetric Sensor for Autonomous, Networked, Real-Time Application.

机构信息

Center for Bio/Molecular Science & Engineering, US Naval Research Laboratory, Washington, DC 20375, USA.

出版信息

Sensors (Basel). 2020 Oct 16;20(20):5857. doi: 10.3390/s20205857.


DOI:10.3390/s20205857
PMID:33081235
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7589661/
Abstract

This review describes an ongoing effort intended to develop wireless sensor networks for real-time monitoring of airborne targets across a broad area. The goal is to apply the spectrophotometric characteristics of porphyrins and metalloporphyrins in a colorimetric array for detection and discrimination of changes in the chemical composition of environmental air samples. The work includes hardware, software, and firmware design as well as development of algorithms for identification of event occurrence and discrimination of targets. Here, we describe the prototype devices and algorithms related to this effort as well as work directed at selection of indicator arrays for use with the system. Finally, we review the field trials completed with the prototype devices and discuss the outlook for further development.

摘要

本综述描述了一项正在进行的努力,旨在开发用于实时监测大面积范围内空气传播目标的无线传感器网络。目标是在比色阵列中应用卟啉和金属卟啉的分光光度特性,以检测和区分环境空气样本化学成分的变化。这项工作包括硬件、软件和固件设计以及用于识别事件发生和目标区分的算法开发。在这里,我们描述了与这一努力相关的原型设备和算法,以及用于该系统的指示剂阵列选择的工作。最后,我们回顾了使用原型设备完成的现场试验,并讨论了进一步开发的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/e3aa2563945a/sensors-20-05857-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/ad30f45389cd/sensors-20-05857-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/c8a0ef8a54f7/sensors-20-05857-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/939b8ddd9497/sensors-20-05857-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/8434b10da1dc/sensors-20-05857-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/5033f75165dc/sensors-20-05857-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/5335fe86e657/sensors-20-05857-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/00156a0e4274/sensors-20-05857-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/1c22d125957a/sensors-20-05857-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/69b9e98a0037/sensors-20-05857-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/89f96a09b8e3/sensors-20-05857-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/ceb3812c3c7f/sensors-20-05857-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/e3aa2563945a/sensors-20-05857-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/ad30f45389cd/sensors-20-05857-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/c8a0ef8a54f7/sensors-20-05857-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/939b8ddd9497/sensors-20-05857-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/8434b10da1dc/sensors-20-05857-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/5033f75165dc/sensors-20-05857-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/5335fe86e657/sensors-20-05857-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/00156a0e4274/sensors-20-05857-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/1c22d125957a/sensors-20-05857-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/69b9e98a0037/sensors-20-05857-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/89f96a09b8e3/sensors-20-05857-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/ceb3812c3c7f/sensors-20-05857-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ff/7589661/e3aa2563945a/sensors-20-05857-g012.jpg

相似文献

[1]
Development of a Colorimetric Sensor for Autonomous, Networked, Real-Time Application.

Sensors (Basel). 2020-10-16

[2]
Development of a Detection Algorithm for Use with Reflectance-Based, Real-Time Chemical Sensing.

Sensors (Basel). 2016-11-16

[3]
Reflectance-based detection for long term environmental monitoring.

Heliyon. 2017-6-7

[4]
Field Demonstration of a Distributed Microsensor Network for Chemical Detection.

Sensors (Basel). 2020-9-22

[5]
Wearable FPGA based wireless sensor platform.

Annu Int Conf IEEE Eng Med Biol Soc. 2007

[6]
Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives.

Crit Rev Anal Chem. 2016-9-16

[7]
Discrimination of Chinese green tea according to varieties and grade levels using artificial nose and tongue based on colorimetric sensor arrays.

Food Chem. 2013-9-5

[8]
Aqueous monitoring of toxic mercury through a rhodamine-based fluorescent sensor.

Math Biosci Eng. 2019-3-6

[9]
Gold Nanorod-Based Chrono-Colorimetric Sensor Arrays: A Promising Platform for Chemical Discrimination Applications.

ACS Omega. 2018-2-1

[10]
Electronic-Tongue Colorimetric-Sensor Array for Discrimination and Quantitation of Metal Ions Based on Gold-Nanoparticle Aggregation.

Anal Chem. 2019-4-17

引用本文的文献

[1]
Detection of the Inoculated Fermentation Process of Apo Pickle Based on a Colorimetric Sensor Array Method.

Foods. 2022-11-10

[2]
Polymer Optical Microcavity Sensor for Volatile Organic Compounds with Distinct Selectivity toward Aromatic Hydrocarbons.

ACS Omega. 2021-8-5

本文引用的文献

[1]
Field Demonstration of a Distributed Microsensor Network for Chemical Detection.

Sensors (Basel). 2020-9-22

[2]
Developing of Low-Cost Air Pollution Sensor-Measurements with the Unmanned Aerial Vehicles in Poland.

Sensors (Basel). 2020-6-24

[3]
The Effect of a Flow Field on Chemical Detection Performance of Quadrotor Drone.

Sensors (Basel). 2020-6-8

[4]
The Application of a Single-Column GC-MS-MS Method for the Rapid Analysis of Chemical Warfare Agents and Breakdown Products.

J Anal Toxicol. 2019-4-1

[5]
Development of Organic-Inorganic Hybrid Optical Gas Sensors for the Non-Invasive Monitoring of Pathogenic Bacteria.

Sensors (Basel). 2018-9-21

[6]
Analysis of chemical warfare agents by portable Raman spectrometer with both 785nm and 1064nm excitation.

Forensic Sci Int. 2018-8-6

[7]
pH-Regulated Optical Performances in Organic/Inorganic Hybrid: A Dual-Mode Sensor Array for Pattern-Recognition-Based Biosensing.

Anal Chem. 2018-8-23

[8]
Effects of Center Metals in Porphines on Nanomechanical Gas Sensing.

Sensors (Basel). 2018-5-21

[9]
Antimicrobial Peptides: New Recognition Molecules for Detecting Botulinum Toxins.

Sensors (Basel). 2007-11-16

[10]
Detection of Chemical Warfare Agent-Related Phenylarsenic Compounds in Marine Biota Samples by LC-HESI/MS/MS.

Anal Chem. 2017-9-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索