Suppr超能文献

机器人无线传感器网络中基于无人机的节能集群数据收集,无人机配备容量有限的电池

Energy-Efficient Cluster-Based Data Collection by a UAV with a Limited-Capacity Battery in Robotic Wireless Sensor Networks.

作者信息

Gul Omer Melih, Erkmen Aydan Muserref

机构信息

Department of Electrical and Electronics Engineering, Middle East Technical University (METU), Cankaya, 06800 Ankara, Turkey.

出版信息

Sensors (Basel). 2020 Oct 16;20(20):5865. doi: 10.3390/s20205865.

Abstract

In this work, our motivation focuses on an energy-efficient data collection problem by a mobile sink, an unmanned aerial vehicle (UAV) with limited battery capacity, in a robot network divided into several robot clusters. In each cluster, a cluster head (CH) robot allocates tasks to the remaining robots and collects data from them. Our contribution is to minimize the UAV total energy consumption coupled to minimum cost data collection from CH robots by visiting optimally a portion of the CH robots. The UAV decides the subset of CH robots to visit by considering not only the locations of all CH robots but also its battery capacity. If the UAV cannot visit all CH robots, then the CH robots not visited by the UAV transmit their data to another CH robot to forward it. The decision of transmission paths of transmitting robots is included in the cost optimization. Our contribution passes beyond the existing paradigms in the literature by considering the constant battery capacity for the UAV. We derive the optimal approach analytically for this problem. For various numbers of clusters, the performance of our strategy is compared with the approach in the close literature in terms of total energy consumed by CH robots, which affects network lifetime. Numerical results demonstrate that our strategy outperforms the approach in the close literature.

摘要

在这项工作中,我们的动机聚焦于一个由移动汇聚节点(即电池容量有限的无人机)在划分为多个机器人集群的机器人网络中进行节能数据收集的问题。在每个集群中,一个簇头(CH)机器人将任务分配给其余机器人,并从它们那里收集数据。我们的贡献在于,通过最优地访问一部分CH机器人,使无人机的总能量消耗最小化,同时将从CH机器人收集数据的成本降至最低。无人机在决定要访问的CH机器人子集时,不仅要考虑所有CH机器人的位置,还要考虑自身的电池容量。如果无人机无法访问所有CH机器人,那么未被无人机访问的CH机器人会将其数据传输给另一个CH机器人以进行转发。传输机器人的传输路径决策包含在成本优化中。通过考虑无人机的恒定电池容量,我们的贡献超越了文献中的现有范式。我们针对此问题进行了分析推导,得出了最优方法。对于不同数量的集群,我们将我们策略的性能与相近文献中的方法在CH机器人消耗的总能量方面进行了比较,而这会影响网络寿命。数值结果表明,我们的策略优于相近文献中的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c1a/7768482/e3d88307c86b/sensors-20-05865-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验