Suppr超能文献

多重 CRISPRi 系统可用于研究粪肠球菌中特定阶段生物膜的遗传需求。

Multiplex CRISPRi System Enables the Study of Stage-Specific Biofilm Genetic Requirements in Enterococcus faecalis.

机构信息

Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore.

School of Biological Sciences, Nanyang Technological University, Singapore.

出版信息

mBio. 2020 Oct 20;11(5):e01101-20. doi: 10.1128/mBio.01101-20.

Abstract

is an opportunistic pathogen, which can cause multidrug-resistant life-threatening infections. Gaining a complete understanding of enterococcal pathogenesis is a crucial step in identifying a strategy to effectively treat enterococcal infections. However, bacterial pathogenesis is a complex process often involving a combination of genes and multilevel regulation. Compared to established knockout methodologies, CRISPR interference (CRISPRi) approaches enable the rapid and efficient silencing of genes to interrogate gene products and pathways involved in pathogenesis. As opposed to traditional gene inactivation approaches, CRISPRi can also be quickly repurposed for multiplexing or used to study essential genes. Here, we have developed a novel dual-vector nisin-inducible CRISPRi system in that can efficiently silence via both nontemplate and template strand targeting. Since the nisin-controlled gene expression system is functional in various Gram-positive bacteria, the developed CRISPRi tool can be extended to other genera. This system can be applied to study essential genes, genes involved in antimicrobial resistance, and genes involved in biofilm formation and persistence. The system is robust and can be scaled up for high-throughput screens or combinatorial targeting. This tool substantially enhances our ability to study enterococcal biology and pathogenesis, host-bacterium interactions, and interspecies communication. causes multidrug-resistant life-threatening infections and is often coisolated with other pathogenic bacteria from polymicrobial biofilm-associated infections. Genetic tools to dissect complex interactions in mixed microbial communities are largely limited to transposon mutagenesis and traditional time- and labor-intensive allelic-exchange methods. Built upon streptococcal dCas9, we developed an easily modifiable, inducible CRISPRi system for that can efficiently silence single and multiple genes. This system can silence genes involved in biofilm formation and antibiotic resistance and can be used to interrogate gene essentiality. Uniquely, this tool is optimized to study genes important for biofilm initiation, maturation, and maintenance and can be used to perturb preformed biofilms. This system will be valuable to rapidly and efficiently investigate a wide range of aspects of complex enterococcal biology.

摘要

屎肠球菌是一种机会性病原体,可导致多种耐药性危及生命的感染。充分了解肠球菌的发病机制是确定有效治疗肠球菌感染策略的关键步骤。然而,细菌发病机制是一个复杂的过程,通常涉及基因和多层次调节的组合。与已建立的敲除方法相比,CRISPR 干扰(CRISPRi)方法能够快速有效地沉默基因,以研究参与发病机制的基因产物和途径。与传统的基因失活方法不同,CRISPRi 还可以快速重新用于多重化或用于研究必需基因。在这里,我们在 中开发了一种新型的双载体乳链菌肽诱导的 CRISPRi 系统,该系统可以通过非模板和模板链靶向有效地沉默。由于乳链菌肽控制的基因表达系统在各种革兰氏阳性菌中均具有功能,因此开发的 CRISPRi 工具可以扩展到其他属。该系统可用于研究必需基因、参与抗菌药物耐药性的基因以及参与生物膜形成和持久性的基因。该系统稳健且可扩展用于高通量筛选或组合靶向。该工具大大增强了我们研究肠球菌生物学和发病机制、宿主-细菌相互作用以及种间通讯的能力。可引起多种耐药性危及生命的感染,并且经常与来自多微生物生物膜相关感染的其他致病细菌共分离。用于剖析混合微生物群落中复杂相互作用的遗传工具在很大程度上仅限于转座子诱变和传统的耗时且劳动密集型等位基因交换方法。基于链球菌 dCas9,我们为 开发了一种易于修饰的诱导型 CRISPRi 系统,该系统可有效沉默单个和多个基因。该系统可沉默参与生物膜形成和抗生素耐药性的基因,并可用于研究基因的必需性。独特的是,该工具经过优化,可用于研究生物膜起始、成熟和维持所必需的基因,并可用于扰乱已形成的生物膜。该系统将有助于快速有效地研究复杂肠球菌生物学的广泛方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea91/7587440/f6bb4d7ba3b0/mBio.01101-20-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验