Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium.
Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium.
FEMS Microbiol Rev. 2024 Sep 18;48(5). doi: 10.1093/femsre/fuae020.
Clustered regularly interspaced short palindromic repeats (CRISPR) has revolutionized the field of genome editing. To circumvent the permanent modifications made by traditional CRISPR techniques and facilitate the study of both essential and nonessential genes, CRISPR interference (CRISPRi) was developed. This gene-silencing technique employs a deactivated Cas effector protein and a guide RNA to block transcription initiation or elongation. Continuous improvements and a better understanding of the mechanism of CRISPRi have expanded its scope, facilitating genome-wide high-throughput screens to investigate the genetic basis of phenotypes. Additionally, emerging CRISPR-based alternatives have further expanded the possibilities for genetic screening. This review delves into the mechanism of CRISPRi, compares it with other high-throughput gene-perturbation techniques, and highlights its superior capacities for studying complex microbial traits. We also explore the evolution of CRISPRi, emphasizing enhancements that have increased its capabilities, including multiplexing, inducibility, titratability, predictable knockdown efficacy, and adaptability to nonmodel microorganisms. Beyond CRISPRi, we discuss CRISPR activation, RNA-targeting CRISPR systems, and single-nucleotide resolution perturbation techniques for their potential in genome-wide high-throughput screens in microorganisms. Collectively, this review gives a comprehensive overview of the general workflow of a genome-wide CRISPRi screen, with an extensive discussion of strengths and weaknesses, future directions, and potential alternatives.
成簇规律间隔短回文重复序列(CRISPR)技术的出现彻底改变了基因组编辑领域。为了避免传统 CRISPR 技术造成的永久性修饰,并方便对必需基因和非必需基因的研究,CRISPR 干扰(CRISPRi)技术应运而生。该基因沉默技术采用失活的 Cas 效应蛋白和指导 RNA 来阻断转录起始或延伸。不断的改进和对 CRISPRi 机制的深入理解扩展了其应用范围,使其能够进行全基因组高通量筛选,以研究表型的遗传基础。此外,新兴的基于 CRISPR 的替代方法进一步扩展了遗传筛选的可能性。本文深入探讨了 CRISPRi 的机制,将其与其他高通量基因干扰技术进行了比较,并强调了其在研究复杂微生物特性方面的卓越能力。我们还探讨了 CRISPRi 的进化,强调了增强其功能的改进,包括多重化、诱导性、滴定性、可预测的敲低效果和对非模式微生物的适应性。除了 CRISPRi,我们还讨论了 CRISPR 激活、RNA 靶向 CRISPR 系统和单核苷酸分辨率扰动技术,探讨了它们在微生物全基因组高通量筛选中的潜力。总的来说,本文全面概述了全基因组 CRISPRi 筛选的一般工作流程,并对其优缺点、未来方向和潜在替代方法进行了广泛讨论。