Suppr超能文献

FRACPRED-2D-PRM:一种基于二维液相色谱-平行反应监测-质谱联用的分数预测算法辅助方法,用于测量人血浆中低丰度蛋白质。

FRACPRED-2D-PRM: A Fraction Prediction Algorithm-Assisted 2D Liquid Chromatography-Based Parallel Reaction Monitoring-Mass Spectrometry Approach for Measuring Low-Abundance Proteins in Human Plasma.

机构信息

Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI, 48109-1065, USA.

Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109-1065, USA.

出版信息

Proteomics. 2020 Dec;20(24):e2000175. doi: 10.1002/pmic.202000175. Epub 2020 Nov 3.

Abstract

Multidimensional fractionation-based enrichment methods improve the sensitivity of proteomic analysis for low-abundance proteins. However, a major limitation of conventional multidimensional proteomics is the extensive labor and instrument time required for analyzing many fractions obtained from the first dimension separation. Here, a fraction prediction algorithm-assisted 2D LC-based parallel reaction monitoring-mass spectrometry (FRACPRED-2D-PRM) approach for measuring low-abundance proteins in human plasma is presented. Plasma digests are separated by the first dimension high-pH RP-LC with data-dependent acquisition (DDA). The FRACPRED algorithm is then usedto predict the retention times of undetectable target peptides according to those of other abundant plasma peptides during the first dimension separation. Fractions predicted to contain target peptides are analyzed by the second dimension low-pH nano RP-LC PRM. The accuracy and robustness of fraction prediction with the FRACPRED algorithm are demonstrated by measuring two low-abundance proteins, aldolase B and carboxylesterase 1, in human plasma. The FRACPRED-2D-PRM proteomics approach demonstrates markedly improved efficiency and sensitivity over conventional 2D-LC proteomics assays. It is expected that this approach will be widely used in the study of low-abundance proteins in plasma and other complex biological samples.

摘要

基于多维分馏的富集方法可提高低丰度蛋白质的蛋白质组学分析的灵敏度。然而,传统多维蛋白质组学的一个主要局限性是,从第一维分离中获得的许多馏分的分析需要大量的劳动力和仪器时间。这里提出了一种基于二维液相色谱平行反应监测质谱(FRACPRED-2D-PRM)的用于测量人血浆中低丰度蛋白质的馏分预测算法辅助方法。血浆消化物通过第一维高 pH RP-LC 与数据依赖采集(DDA)进行分离。然后,根据第一维分离过程中其他丰富的血浆肽的保留时间,使用 FRACPRED 算法预测不可检测靶肽的保留时间。根据第二维低 pH 纳升 RP-LC PRM 分析预测含有靶肽的馏分。通过测量人血浆中的两种低丰度蛋白质醛缩酶 B 和羧酸酯酶 1,证明了 FRACPRED 算法的馏分预测的准确性和稳健性。与传统二维液相色谱蛋白质组学分析相比,FRACPRED-2D-PRM 蛋白质组学方法显著提高了效率和灵敏度。预计该方法将广泛应用于血浆和其他复杂生物样品中低丰度蛋白质的研究。

相似文献

10
Exploration of Missing Proteins by a Combination Approach to Enrich the Low-Abundance Hydrophobic Proteins from Four Cancer Cell Lines.
J Proteome Res. 2020 Jan 3;19(1):401-408. doi: 10.1021/acs.jproteome.9b00590. Epub 2019 Dec 10.

引用本文的文献

1
Quantitation of Plasma Proteins to Predict Taxane-Induced Peripheral Neuropathy.
JCO Precis Oncol. 2025 Jan;9:e2400380. doi: 10.1200/PO-24-00380. Epub 2025 Jan 31.
2
Omics of endothelial cell dysfunction in sepsis.
Vasc Biol. 2022 Apr 7;4(1):R15-R34. doi: 10.1530/VB-22-0003. eCollection 2022 Feb 1.

本文引用的文献

1
Improved Peptide Retention Time Prediction in Liquid Chromatography through Deep Learning.
Anal Chem. 2018 Sep 18;90(18):10881-10888. doi: 10.1021/acs.analchem.8b02386. Epub 2018 Aug 29.
3
Revisiting biomarker discovery by plasma proteomics.
Mol Syst Biol. 2017 Sep 26;13(9):942. doi: 10.15252/msb.20156297.
4
Deep-Dive Targeted Quantification for Ultrasensitive Analysis of Proteins in Nondepleted Human Blood Plasma/Serum and Tissues.
Anal Chem. 2017 Sep 5;89(17):9139-9146. doi: 10.1021/acs.analchem.7b01878. Epub 2017 Aug 11.
5
The ABCs of finding a good antibody: How to find a good antibody, validate it, and publish meaningful data.
F1000Res. 2017 Jun 8;6:851. doi: 10.12688/f1000research.11774.1. eCollection 2017.
6
Dabigatran etexilate activation is affected by the CES1 genetic polymorphism G143E (rs71647871) and gender.
Biochem Pharmacol. 2016 Nov 1;119:76-84. doi: 10.1016/j.bcp.2016.09.003. Epub 2016 Sep 8.
7
Association of Oseltamivir Activation with Gender and Carboxylesterase 1 Genetic Polymorphisms.
Basic Clin Pharmacol Toxicol. 2016 Dec;119(6):555-561. doi: 10.1111/bcpt.12625. Epub 2016 Jul 21.
9
Plasma Proteome Profiling to Assess Human Health and Disease.
Cell Syst. 2016 Mar 23;2(3):185-95. doi: 10.1016/j.cels.2016.02.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验