Suppr超能文献

基于自动化多维纳流色谱和四极杆-轨道阱-线性离子阱质谱联用仪的高灵敏度定量蛋白质组学研究

High Sensitivity Quantitative Proteomics Using Automated Multidimensional Nano-flow Chromatography and Accumulated Ion Monitoring on Quadrupole-Orbitrap-Linear Ion Trap Mass Spectrometer.

机构信息

From the ‡Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065.

From the ‡Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065;

出版信息

Mol Cell Proteomics. 2017 Nov;16(11):2006-2016. doi: 10.1074/mcp.RA117.000023. Epub 2017 Aug 18.

Abstract

Quantitative proteomics using high-resolution and accuracy mass spectrometry promises to transform our understanding of biological systems and disease. Recent development of parallel reaction monitoring (PRM) using hybrid instruments substantially improved the specificity of targeted mass spectrometry. Combined with high-efficiency ion trapping, this approach also provided significant improvements in sensitivity. Here, we investigated the effects of ion isolation and accumulation on the sensitivity and quantitative accuracy of targeted proteomics using the recently developed hybrid quadrupole-Orbitrap-linear ion trap mass spectrometer. We leveraged ultrahigh efficiency nano-electrospray ionization under optimized conditions to achieve yoctomolar sensitivity with more than seven orders of linear quantitative accuracy. To enable sensitive and specific targeted mass spectrometry, we implemented an automated, two-dimensional (2D) ion exchange-reversed phase nanoscale chromatography system. We found that automated 2D chromatography improved the sensitivity and accuracy of both PRM and an intact precursor scanning mass spectrometry method, termed accumulated ion monitoring (AIM), by more than 100-fold. Combined with automated 2D nano-scale chromatography, AIM achieved subattomolar limits of detection of endogenous proteins in complex biological proteomes. This allowed quantitation of absolute abundance of the human transcription factor MEF2C at ∼100 molecules/cell, and determination of its phosphorylation stoichiometry from as little as 1 μg of extracts isolated from 10,000 human cells. The combination of automated multidimensional nano-scale chromatography and targeted mass spectrometry should enable ultrasensitive high-accuracy quantitative proteomics of complex biological systems and diseases.

摘要

基于高分辨率和高精度质谱的定量蛋白质组学有望改变我们对生物系统和疾病的理解。近年来,采用混合仪器的平行反应监测(PRM)的发展显著提高了靶向质谱的特异性。与高效离子阱相结合,这种方法还显著提高了灵敏度。在这里,我们使用最近开发的混合四极杆-Orbitrap-线性离子阱质谱仪研究了离子隔离和积累对靶向蛋白质组学灵敏度和定量准确性的影响。我们利用在优化条件下的超高效率纳升电喷雾电离,实现了皮摩尔灵敏度,线性定量准确性超过七个数量级。为了实现灵敏和特异的靶向质谱,我们实施了自动化二维(2D)离子交换-反相纳流色谱系统。我们发现,自动化 2D 色谱法使 PRM 和完整的前体扫描质谱法(称为累积离子监测(AIM))的灵敏度和准确性提高了 100 多倍。与自动化二维纳流色谱相结合,AIM 实现了复杂生物蛋白质组中内源性蛋白质的亚皮摩尔检测限。这使得可以定量 10000 个人类细胞中约 100 个分子/细胞的人类转录因子 MEF2C 的绝对丰度,并从 1μg 提取物中测定其磷酸化化学计量。自动化多维纳流色谱和靶向质谱的结合应该能够实现复杂生物系统和疾病的超高灵敏度和高精度定量蛋白质组学。

相似文献

2
Automated Multidimensional Nanoscale Chromatography for Ultrasensitive Targeted Mass Spectrometry.
Methods Mol Biol. 2022;2393:207-224. doi: 10.1007/978-1-0716-1803-5_11.
3
Technical considerations for large-scale parallel reaction monitoring analysis.
J Proteomics. 2014 Apr 4;100:147-59. doi: 10.1016/j.jprot.2013.10.029. Epub 2013 Nov 4.
5
Comparison of Unit Resolution Versus High-Resolution Accurate Mass for Parallel Reaction Monitoring.
J Proteome Res. 2021 Sep 3;20(9):4435-4442. doi: 10.1021/acs.jproteome.1c00377. Epub 2021 Jul 28.
6
Implementation of electron-transfer dissociation on a hybrid linear ion trap-orbitrap mass spectrometer.
Anal Chem. 2007 May 15;79(10):3525-34. doi: 10.1021/ac070020k. Epub 2007 Apr 19.
7
Large-Scale Targeted Proteomics Using Internal Standard Triggered-Parallel Reaction Monitoring (IS-PRM).
Mol Cell Proteomics. 2015 Jun;14(6):1630-44. doi: 10.1074/mcp.O114.043968. Epub 2015 Mar 9.
9
Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics.
Mol Cell Proteomics. 2012 Nov;11(11):1475-88. doi: 10.1074/mcp.O112.020131. Epub 2012 Aug 3.

引用本文的文献

2
Proteomic Barcoding Platform for Macromolecular Screening and Delivery.
J Proteome Res. 2024 Jun 7;23(6):2067-2077. doi: 10.1021/acs.jproteome.4c00068. Epub 2024 May 22.
4
Cerebrospinal fluid biomarkers for assessing Huntington disease onset and severity.
Brain Commun. 2022 Nov 25;4(6):fcac309. doi: 10.1093/braincomms/fcac309. eCollection 2022.
5
Quantitative Cell Proteomic Atlas: Pathway-Scale Targeted Mass Spectrometry for High-Resolution Functional Profiling of Cell Signaling.
J Proteome Res. 2022 Oct 7;21(10):2535-2544. doi: 10.1021/acs.jproteome.2c00223. Epub 2022 Sep 26.
6
The addition of FAIMS increases targeted proteomics sensitivity from FFPE tumor biopsies.
Sci Rep. 2022 Aug 16;12(1):13876. doi: 10.1038/s41598-022-16358-1.
7
Proteomic Approaches to Unravel Mechanisms of Antibiotic Resistance and Immune Evasion of Bacterial Pathogens.
Front Med (Lausanne). 2022 May 2;9:850374. doi: 10.3389/fmed.2022.850374. eCollection 2022.
8
Spatial Multiplex In Situ Tagging (MIST) Technology for Rapid, Highly Multiplexed Detection of Protein Distribution on Brain Tissue.
Anal Chem. 2022 Mar 8;94(9):3922-3929. doi: 10.1021/acs.analchem.1c04970. Epub 2022 Feb 25.
9
Towards Higher Sensitivity of Mass Spectrometry: A Perspective From the Mass Analyzers.
Front Chem. 2021 Dec 21;9:813359. doi: 10.3389/fchem.2021.813359. eCollection 2021.

本文引用的文献

1
ProteoModlR for functional proteomic analysis.
BMC Bioinformatics. 2017 Mar 4;18(1):153. doi: 10.1186/s12859-017-1563-6.
3
Mass-spectrometric exploration of proteome structure and function.
Nature. 2016 Sep 15;537(7620):347-55. doi: 10.1038/nature19949.
5
Evolution of Orbitrap Mass Spectrometry Instrumentation.
Annu Rev Anal Chem (Palo Alto Calif). 2015;8:61-80. doi: 10.1146/annurev-anchem-071114-040325.
6
A High-Efficiency Cellular Extraction System for Biological Proteomics.
J Proteome Res. 2015 Aug 7;14(8):3403-8. doi: 10.1021/acs.jproteome.5b00547. Epub 2015 Jul 14.
7
Large-Scale Targeted Proteomics Using Internal Standard Triggered-Parallel Reaction Monitoring (IS-PRM).
Mol Cell Proteomics. 2015 Jun;14(6):1630-44. doi: 10.1074/mcp.O114.043968. Epub 2015 Mar 9.
8
A "proteomic ruler" for protein copy number and concentration estimation without spike-in standards.
Mol Cell Proteomics. 2014 Dec;13(12):3497-506. doi: 10.1074/mcp.M113.037309. Epub 2014 Sep 15.
9
Simplified and efficient quantification of low-abundance proteins at very high multiplex via targeted mass spectrometry.
Mol Cell Proteomics. 2014 Apr;13(4):1137-49. doi: 10.1074/mcp.M113.034660. Epub 2014 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验