Spicer Vic, Ezzati Peyman, Neustaeter Haley, Beavis Ronald C, Wilkins John A, Krokhin Oleg V
Manitoba Centre for Proteomics and Systems Biology, University of Manitoba , 799 JBRC, 715 McDermot Avenue, Winnipeg, Manitoba R3E 3P4, Canada.
Department of Chemistry, University of Manitoba , 360 Parker Building, Winnipeg, Manitoba R3T 2N2, Canada.
Anal Chem. 2016 Mar 1;88(5):2847-55. doi: 10.1021/acs.analchem.5b04567. Epub 2016 Feb 18.
The growing complexity of proteomics samples and the desire for deeper analysis drive the development of both better MS instrument and advanced multidimensional separation schemes. We applied 1D, 2D, and 3D LC-MS/MS separation protocols (all of reversed-phase C18 functionality) to a tryptic digest of whole Jurkat cell lysate to estimate the depth of proteome coverage and to collect high-quality peptide retention information. We varied pH of the eluent and hydrophobicity of ion-pairing modifier to achieve good separation orthogonality (utilization of MS instrument time). All separation modes employed identical LC settings with formic-acid-based eluents in the last dimension. The 2D protocol used a high pH-low pH scheme with 21 concatenated fractions. In the 3D protocol, six concatenated fractions from the first dimension (C18, heptafluorobutyric acid) were analyzed using the identical 2D LC-MS procedure. This approach permitted a detailed evaluation of the analysis output consuming 21× and 126× the analysis time and sample load compared to 1D. Acquisition over 189 h of instrument time in 3D mode resulted in the identification of ∼14 000 proteins and ∼250 000 unique peptides. We estimated the dynamic range via peak intensity at the MS(2) level as approximately 10(4.2), 10(5.6), and 10(6.2) for the 1D, 2D, and 3D protocols, respectively. The uniform distribution of the number of acquired MS/MS, protein, and peptide identifications across all 126 fractions and through the chromatographic time scale in the last LC-MS stage indicates good separation orthogonality. The protocol is scalable and is amenable to the use of peptide retention prediction in all dimensions. All these features make it a very good candidate for large-scale bottom-up proteomic runs, which target both protein identification as well as the collection of peptide retention data sets for targeted quantitative applications.
蛋白质组学样品日益复杂,以及人们对更深入分析的需求,推动了更好的质谱仪器和先进的多维分离方案的发展。我们将一维、二维和三维液相色谱-串联质谱分离方案(均具有反相C18功能)应用于整个Jurkat细胞裂解物的胰蛋白酶消化产物,以估计蛋白质组覆盖深度并收集高质量的肽保留信息。我们改变洗脱液的pH值和离子对改性剂的疏水性,以实现良好的分离正交性(质谱仪器时间的利用)。所有分离模式在最后一维均采用相同的液相色谱设置,以甲酸为基础的洗脱液。二维方案采用高pH-低pH方案,有21个串联馏分。在三维方案中,使用相同的二维液相色谱-质谱程序分析来自第一维(C18,七氟丁酸)的六个串联馏分。与一维相比,这种方法允许详细评估分析输出,消耗的分析时间和样品量分别是一维的21倍和126倍。在三维模式下进行189小时的仪器时间采集,鉴定出约14000种蛋白质和约250000种独特肽段。我们通过二级质谱水平的峰强度估计动态范围,一维、二维和三维方案分别约为10(4.2)、10(5.6)和10(6.2)。在最后一个液相色谱-质谱阶段,所有126个馏分以及整个色谱时间尺度上获得的串联质谱、蛋白质和肽段鉴定数量的均匀分布表明分离正交性良好。该方案具有可扩展性,适用于所有维度的肽保留预测。所有这些特性使其成为大规模自下而上蛋白质组学分析的理想选择,这种分析既针对蛋白质鉴定,也针对靶向定量应用的肽保留数据集的收集。