Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Cell Rep. 2020 Oct 20;33(3):108293. doi: 10.1016/j.celrep.2020.108293.
Histone methyltransferase KMT2D harbors frequent loss-of-function somatic point mutations in several tumor types, including melanoma. Here, we identify KMT2D as a potent tumor suppressor in melanoma through an in vivo epigenome-focused pooled RNAi screen and confirm the finding by using a genetically engineered mouse model (GEMM) based on conditional and melanocyte-specific deletion of KMT2D. KMT2D-deficient tumors show substantial reprogramming of key metabolic pathways, including glycolysis. KMT2D deficiency aberrantly upregulates glycolysis enzymes, intermediate metabolites, and glucose consumption rates. Mechanistically, KMT2D loss causes genome-wide reduction of H3K4me1-marked active enhancer chromatin states. Enhancer loss and subsequent repression of IGFBP5 activates IGF1R-AKT to increase glycolysis in KMT2D-deficient cells. Pharmacological inhibition of glycolysis and insulin growth factor (IGF) signaling reduce proliferation and tumorigenesis preferentially in KMT2D-deficient cells. We conclude that KMT2D loss promotes tumorigenesis by facilitating an increased use of the glycolysis pathway for enhanced biomass needs via enhancer reprogramming, thus presenting an opportunity for therapeutic intervention through glycolysis or IGF pathway inhibitors.
组蛋白甲基转移酶 KMT2D 在包括黑色素瘤在内的几种肿瘤类型中存在频繁的功能丧失性体细胞点突变。在这里,我们通过体内以表观基因组为重点的 RNAi 组合筛选鉴定 KMT2D 为黑色素瘤中的有效肿瘤抑制因子,并通过基于 KMT2D 条件性和黑素细胞特异性缺失的基因工程小鼠模型(GEMM)来验证该发现。KMT2D 缺陷肿瘤显示关键代谢途径(包括糖酵解)的大量重编程。KMT2D 缺陷会异常地上调糖酵解酶、中间代谢物和葡萄糖消耗率。从机制上讲,KMT2D 的缺失导致全基因组范围内 H3K4me1 标记的活性增强子染色质状态减少。增强子的丢失和随后的 IGFBP5 抑制激活 IGF1R-AKT,以增加 KMT2D 缺陷细胞中的糖酵解。通过抑制糖酵解和胰岛素生长因子(IGF)信号通路,可以优先降低 KMT2D 缺陷细胞的增殖和肿瘤发生。我们得出结论,KMT2D 的缺失通过增强增强子重编程促进了糖酵解途径的利用,从而为通过糖酵解或 IGF 途径抑制剂进行治疗干预提供了机会。