用于探测神经性疼痛综合征中 NaV1.7 功能获得性变异的计算流程。
Computational pipeline to probe NaV1.7 gain-of-function variants in neuropathic painful syndromes.
机构信息
Dipartimento di Scienze Molecolari e Nanosistemi, Universitá Ca' Foscari Venezia, Venezia-Mestre, Italy.
Dipartimento di Scienze Ambientali, Informatica e Statistica, Universitá Ca' Foscari Venezia, Venezia-Mestre, Italy.
出版信息
Sci Rep. 2020 Oct 21;10(1):17930. doi: 10.1038/s41598-020-74591-y.
Applications of machine learning and graph theory techniques to neuroscience have witnessed an increased interest in the last decade due to the large data availability and unprecedented technology developments. Their employment to investigate the effect of mutational changes in genes encoding for proteins modulating the membrane of excitable cells, whose biological correlates are assessed at electrophysiological level, could provide useful predictive clues. We apply this concept to the analysis of variants in sodium channel NaV1.7 subunit found in patients with chronic painful syndromes, by the implementation of a dedicated computational pipeline empowering different and complementary techniques including homology modeling, network theory, and machine learning. By testing three templates of different origin and sequence identities, we provide an optimal condition for its use. Our findings reveal the usefulness of our computational pipeline in supporting the selection of candidates for cell electrophysiology assay and with potential clinical applications.
由于大量数据的可用性和前所未有的技术发展,机器学习和图论技术在神经科学中的应用在过去十年中引起了越来越多的关注。将这些技术应用于研究编码调节可兴奋细胞膜的蛋白质的基因突变的影响,其生物学相关性在电生理学水平上进行评估,可以提供有用的预测线索。我们将这一概念应用于分析慢性疼痛综合征患者中发现的钠通道 NaV1.7 亚基的变体,通过实施专用的计算管道,该管道支持包括同源建模、网络理论和机器学习在内的不同且互补的技术。通过测试三个不同来源和序列同一性的模板,我们提供了最佳的使用条件。我们的研究结果表明,我们的计算管道在支持候选细胞电生理学检测的选择方面具有有用性,并具有潜在的临床应用。