Suppr超能文献

非共价键合分子中表面诱导对称性破缺导致的构型内跃迁。

Intraconfigurational Transition due to Surface-Induced Symmetry Breaking in Noncovalently Bonded Molecules.

作者信息

Bouatou Mehdi, Harsh Rishav, Joucken Frédéric, Chacon Cyril, Repain Vincent, Bellec Amandine, Girard Yann, Rousset Sylvie, Sporken Robert, Gao Fei, Brandbyge Mads, Dappe Yannick J, Barreteau Cyrille, Smogunov Alexander, Lagoute Jérôme

机构信息

Université de Paris, Laboratoire Matériaux et Phénomènes Quantiques, CNRS, F-75013 Paris, France.

Research Center in Physics of Matter and Radiation (PMR), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium.

出版信息

J Phys Chem Lett. 2020 Nov 5;11(21):9329-9335. doi: 10.1021/acs.jpclett.0c02407. Epub 2020 Oct 22.

Abstract

The interaction of molecules with surfaces plays a crucial role in the electronic and chemical properties of supported molecules and needs a comprehensive description of interfacial effects. Here, we unveil the effect of the substrate on the electronic configuration of iron porphyrin molecules on Au(111) and graphene, and we provide a physical picture of the molecule-surface interaction. We show that the frontier orbitals derive from different electronic states depending on the substrate. The origin of this difference comes from molecule-substrate orbital selective coupling caused by reduced symmetry and interaction with the substrate. The weak interaction on graphene keeps a ground state configuration close to the gas phase, while the stronger interaction on gold stabilizes another electronic solution. Our findings reveal the origin of the energy redistribution of molecular states for noncovalently bonded molecules on surfaces.

摘要

分子与表面的相互作用在负载分子的电子和化学性质中起着关键作用,并且需要对界面效应进行全面描述。在此,我们揭示了衬底对金(111)和石墨烯上铁卟啉分子电子构型的影响,并提供了分子 - 表面相互作用的物理图像。我们表明,前沿轨道取决于衬底,源自不同的电子态。这种差异的根源来自于对称性降低以及与衬底相互作用所导致的分子 - 衬底轨道选择性耦合。石墨烯上的弱相互作用使基态构型接近气相,而金上较强的相互作用则稳定了另一种电子态。我们的研究结果揭示了表面上非共价键合分子的分子态能量重新分布的根源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验