Department of Neurobiology and Behavior.
Department of Cognitive, Linguistic, and Psychological Sciences.
J Exp Psychol Hum Percept Perform. 2021 Jan;47(1):13-35. doi: 10.1037/xhp0000875. Epub 2020 Oct 22.
Path integration-the constant updating of position and orientation in an environment-is an important component of spatial navigation, however, its mechanisms are poorly understood. The aims of this study are (a) to test the encoding-error model of path integration, which focuses solely on encoding as a potential source of error, and (b) to develop a model of path integration that best predicts path integration errors. We tested the encoding-error model by independently measuring participants' encoding errors in distance and angle reproduction tasks, and then using those reproduction errors to predict individual participants' errors in a triangle completion task. We sampled the distribution of encoding errors using Monte Carlo methods to predict the homebound path, and then compared the predictions to observed triangle completion behavior. The correlation between predicted errors and actual errors in the triangle completion task was extremely weak, whereas an alternative model using execution error alone was sufficient to describe the observed errors. A model incorporating both encoding and execution errors best described the triangle completion errors. These results suggest that errors in executing the response may contribute more to overall errors in path integration than do encoding errors, challenging the assumption that errors reflect encoding alone. Errors in triangle completion might not arise from failing to know where you are, but from an inability to get back home. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
路径整合——在环境中不断更新位置和方向——是空间导航的一个重要组成部分,但其机制尚不清楚。本研究的目的是:(a)检验路径整合的编码错误模型,该模型仅关注编码作为潜在误差源;(b) 开发一种能够更好地预测路径整合误差的模型。我们通过独立测量参与者在距离和角度再现任务中的编码误差,然后使用这些再现误差来预测个体参与者在三角形完成任务中的误差,来检验编码错误模型。我们使用蒙特卡罗方法对编码误差分布进行采样,以预测回家路径,然后将预测值与观察到的三角形完成行为进行比较。在三角形完成任务中,预测误差与实际误差之间的相关性非常弱,而仅使用执行误差的替代模型足以描述观察到的误差。包含编码和执行误差的模型能够更好地描述三角形完成误差。这些结果表明,在执行反应过程中出现的误差可能比编码误差更能导致路径整合中的整体误差,这对误差仅反映编码的假设提出了挑战。在三角形完成中出现的错误可能不是源于不知道自己的位置,而是源于无法回到原点。