Suppr超能文献

蛋白质-蛋白质相互作用测定的下一代技术:超越晶体结构

Next Generation Techniques for Determination of Protein-Protein Interactions: Beyond the Crystal Structure.

作者信息

Carter Rachel, Luchini Alessandra, Liotta Lance, Haymond Amanda

机构信息

Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA.

出版信息

Curr Pathobiol Rep. 2019 Sep;7(3):61-71. doi: 10.1007/s40139-019-00198-2. Epub 2019 Jul 1.

Abstract

PURPOSE OF REVIEW

We discuss recent advancements in structural biology methods for investigating sites of protein-protein interactions. We will inform readers outside the field of structural biology about techniques beyond crystallography, and how these different technologies can be utilized for drug development.

RECENT FINDINGS

Advancements in cryo-electron microscopy (cryoEM) and micro-electron diffraction (microED) may change how we view atomic resolution structural biology, such that well-ordered macrocrystals of protein complexes are not required for interface identification. However, some drug discovery applications, such as lead peptide compound generation, may not require atomic resolution; mass spectrometry techniques can provide an expedited path to generation of lead compounds. New crosslinking compounds, more user-friendly data analysis, and novel protocols such as protein painting can advance drug discovery programs, even in the absence of atomic resolution structural data. Finally, artificial intelligence and machine learning methods, while never truly replacing experimental methods, may provide rational ways to stratify potential druggable regions identified with mass spectrometry into higher and lower priority candidates.

SUMMARY

Electron diffraction of nanocrystals combines the benefits of both x-ray diffraction and cryoEM, and may prove to be the next generation of atomic resolution protein-protein interface identification. However, in situations such as peptide drug discovery, mass spectrometry techniques supported by advancements in computational methods will likely prove sufficient to support drug discovery efforts. In addition, these methods can be significantly faster than any crystallographic or cryoEM methods for identification of interacting regions.

摘要

综述目的

我们讨论了用于研究蛋白质-蛋白质相互作用位点的结构生物学方法的最新进展。我们将向结构生物学领域之外的读者介绍除晶体学之外的技术,以及这些不同技术如何用于药物开发。

最新发现

冷冻电子显微镜(cryoEM)和微电子衍射(microED)的进展可能会改变我们对原子分辨率结构生物学的看法,以至于识别界面不需要蛋白质复合物排列良好的大晶体。然而,一些药物发现应用,如先导肽化合物的生成,可能不需要原子分辨率;质谱技术可以提供一条加快生成先导化合物的途径。新的交联化合物、更便于用户使用的数据分析以及诸如蛋白质描绘等新方案,即使在没有原子分辨率结构数据的情况下,也可以推进药物发现计划。最后,人工智能和机器学习方法虽然永远无法真正取代实验方法,但可能提供合理的方法,将通过质谱法确定的潜在可成药区域分层为优先级较高和较低的候选区域。

总结

纳米晶体的电子衍射结合了X射线衍射和冷冻电子显微镜的优点,可能会成为下一代原子分辨率蛋白质-蛋白质界面识别方法。然而,在肽类药物发现等情况下,计算方法进步所支持的质谱技术可能足以支持药物发现工作。此外,这些方法在识别相互作用区域方面可能比任何晶体学或冷冻电子显微镜方法都要快得多。

相似文献

1
Next Generation Techniques for Determination of Protein-Protein Interactions: Beyond the Crystal Structure.
Curr Pathobiol Rep. 2019 Sep;7(3):61-71. doi: 10.1007/s40139-019-00198-2. Epub 2019 Jul 1.
2
A Workflow for Protein Structure Determination From Thin Crystal Lamella by Micro-Electron Diffraction.
Front Mol Biosci. 2020 Aug 4;7:179. doi: 10.3389/fmolb.2020.00179. eCollection 2020.
3
Atomic resolution structure determination by the cryo-EM method MicroED.
Protein Sci. 2017 Jan;26(1):8-15. doi: 10.1002/pro.2989. Epub 2016 Aug 19.
4
The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination.
ACS Cent Sci. 2018 Nov 28;4(11):1587-1592. doi: 10.1021/acscentsci.8b00760. Epub 2018 Nov 2.
6
Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED.
Nat Methods. 2017 Feb 13;14(4):399-402. doi: 10.1038/nmeth.4178.
7
Three-dimensional electron crystallography of protein microcrystals.
Elife. 2013 Nov 19;2:e01345. doi: 10.7554/eLife.01345.
8
From electron crystallography of 2D crystals to MicroED of 3D crystals.
Curr Opin Colloid Interface Sci. 2018 Mar;34:9-16. doi: 10.1016/j.cocis.2018.01.010. Epub 2018 Jan 31.
9
MicroED: a versatile cryoEM method for structure determination.
Emerg Top Life Sci. 2018 Apr 20;2(1):1-8. doi: 10.1042/ETLS20170082. Epub 2018 Feb 6.
10
Atomic resolution cryo electron microscopy of macromolecular complexes.
Adv Protein Chem Struct Biol. 2011;82:1-35. doi: 10.1016/B978-0-12-386507-6.00001-4.

引用本文的文献

1
An Ensemble Classifiers for Improved Prediction of Native-Non-Native Protein-Protein Interaction.
Int J Mol Sci. 2024 May 29;25(11):5957. doi: 10.3390/ijms25115957.
2
Molecular basis for protein-protein interactions.
Beilstein J Org Chem. 2021 Jan 4;17:1-10. doi: 10.3762/bjoc.17.1. eCollection 2021.

本文引用的文献

2
Challenges and opportunities in cryo-EM single-particle analysis.
J Biol Chem. 2019 Mar 29;294(13):5181-5197. doi: 10.1074/jbc.REV118.005602. Epub 2019 Feb 25.
5
Interleukin-33 and ST2 Signaling in Tumor Microenvironment.
J Interferon Cytokine Res. 2019 Jan;39(1):61-71. doi: 10.1089/jir.2018.0044. Epub 2018 Sep 25.
6
MicroED: a versatile cryoEM method for structure determination.
Emerg Top Life Sci. 2018 Apr 20;2(1):1-8. doi: 10.1042/ETLS20170082. Epub 2018 Feb 6.
7
Two Patched molecules engage distinct sites on Hedgehog yielding a signaling-competent complex.
Science. 2018 Oct 5;362(6410). doi: 10.1126/science.aas8843. Epub 2018 Aug 23.
8
PPInS: a repository of protein-protein interaction sitesbase.
Sci Rep. 2018 Aug 20;8(1):12453. doi: 10.1038/s41598-018-30999-1.
9
The function and clinical significance of eIF3 in cancer.
Gene. 2018 Oct 5;673:130-133. doi: 10.1016/j.gene.2018.06.034. Epub 2018 Jun 22.
10
Backbone-Cyclized Peptides: A Critical Review.
Curr Top Med Chem. 2018;18(7):526-555. doi: 10.2174/1568026618666180518092333.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验