Carter Rachel, Luchini Alessandra, Liotta Lance, Haymond Amanda
Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA.
Curr Pathobiol Rep. 2019 Sep;7(3):61-71. doi: 10.1007/s40139-019-00198-2. Epub 2019 Jul 1.
We discuss recent advancements in structural biology methods for investigating sites of protein-protein interactions. We will inform readers outside the field of structural biology about techniques beyond crystallography, and how these different technologies can be utilized for drug development.
Advancements in cryo-electron microscopy (cryoEM) and micro-electron diffraction (microED) may change how we view atomic resolution structural biology, such that well-ordered macrocrystals of protein complexes are not required for interface identification. However, some drug discovery applications, such as lead peptide compound generation, may not require atomic resolution; mass spectrometry techniques can provide an expedited path to generation of lead compounds. New crosslinking compounds, more user-friendly data analysis, and novel protocols such as protein painting can advance drug discovery programs, even in the absence of atomic resolution structural data. Finally, artificial intelligence and machine learning methods, while never truly replacing experimental methods, may provide rational ways to stratify potential druggable regions identified with mass spectrometry into higher and lower priority candidates.
Electron diffraction of nanocrystals combines the benefits of both x-ray diffraction and cryoEM, and may prove to be the next generation of atomic resolution protein-protein interface identification. However, in situations such as peptide drug discovery, mass spectrometry techniques supported by advancements in computational methods will likely prove sufficient to support drug discovery efforts. In addition, these methods can be significantly faster than any crystallographic or cryoEM methods for identification of interacting regions.
我们讨论了用于研究蛋白质-蛋白质相互作用位点的结构生物学方法的最新进展。我们将向结构生物学领域之外的读者介绍除晶体学之外的技术,以及这些不同技术如何用于药物开发。
冷冻电子显微镜(cryoEM)和微电子衍射(microED)的进展可能会改变我们对原子分辨率结构生物学的看法,以至于识别界面不需要蛋白质复合物排列良好的大晶体。然而,一些药物发现应用,如先导肽化合物的生成,可能不需要原子分辨率;质谱技术可以提供一条加快生成先导化合物的途径。新的交联化合物、更便于用户使用的数据分析以及诸如蛋白质描绘等新方案,即使在没有原子分辨率结构数据的情况下,也可以推进药物发现计划。最后,人工智能和机器学习方法虽然永远无法真正取代实验方法,但可能提供合理的方法,将通过质谱法确定的潜在可成药区域分层为优先级较高和较低的候选区域。
纳米晶体的电子衍射结合了X射线衍射和冷冻电子显微镜的优点,可能会成为下一代原子分辨率蛋白质-蛋白质界面识别方法。然而,在肽类药物发现等情况下,计算方法进步所支持的质谱技术可能足以支持药物发现工作。此外,这些方法在识别相互作用区域方面可能比任何晶体学或冷冻电子显微镜方法都要快得多。