School of Biological Sciences, The University of Adelaide, Adelaide, Australia.
Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, Australia.
CRISPR J. 2020 Oct;3(5):388-397. doi: 10.1089/crispr.2020.0050.
CRISPR-based synthetic gene drives have the potential to deliver a more effective and humane method of invasive vertebrate pest control than current strategies. Relatively efficient CRISPR gene drive systems have been developed in insects and yeast but not in mammals. Here, we investigated the efficiency of CRISPR-Cas9-based gene drives in by constructing "split drive" systems where gRNA expression occurs on a separate chromosome to Cas9, which is under the control of either a zygotic (CAG) or germline (Vasa) promoter. While both systems generated double-strand breaks at their intended target site , no homology-directed repair between chromosomes ("homing") was detectable. Our data indicate that robust and specific Cas9 expression during meiosis is a critical requirement for the generation of efficient CRISPR-based synthetic gene drives in rodents.
基于 CRISPR 的合成基因驱动器有可能提供比当前策略更有效和人道的方法来控制入侵的脊椎动物害虫。相对高效的 CRISPR 基因驱动系统已在昆虫和酵母中开发出来,但在哺乳动物中尚未开发出来。在这里,我们通过构建“分裂驱动”系统来研究基于 CRISPR-Cas9 的基因驱动在中的效率,其中 gRNA 表达发生在与 Cas9 分离的染色体上,Cas9 受合子(CAG)或生殖系(Vasa)启动子的控制。虽然这两个系统都在其预期的靶位点产生了双链断裂,但在染色体之间没有检测到同源定向修复(“归巢”)。我们的数据表明,在减数分裂过程中产生强大而特异的 Cas9 表达是在啮齿动物中产生高效的基于 CRISPR 的合成基因驱动器的关键要求。