Suppr超能文献

含有轮烷分子穿梭体的金属有机框架中气体吸附的统计力学模型

Statistical Mechanical Model of Gas Adsorption in a Metal-Organic Framework Harboring a Rotaxane Molecular Shuttle.

作者信息

Carney Jonathan, Roundy David, Simon Cory M

机构信息

Department of Physics, Oregon State University, Corvallis, Oregon 97331, United States.

School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States.

出版信息

Langmuir. 2020 Nov 3;36(43):13112-13123. doi: 10.1021/acs.langmuir.0c02839. Epub 2020 Oct 23.

Abstract

Metal-organic frameworks (MOFs) are modular and tunable nanoporous materials with applications in gas storage, separations, and sensing. Integrating flexible/dynamic, gas-responsive components into MOFs can give them unique or enhanced adsorption properties. Here, we explore the adsorption properties that could be imparted to a MOF by a rotaxane molecular shuttle (RMS) in its pores. In the unit cell of an RMS-MOF, a macrocyclic wheel is mechanically interlocked with a strut of the MOF scaffold. The wheel shuttles between stations on the strut that are also gas adsorption sites. At a level of abstraction similar to the seminal Langmuir adsorption model, we pose and analyze a simple statistical mechanical model of gas adsorption in an RMS-MOF that accounts for (i) wheel/gas competition for sites on the strut and (ii) gas-induced changes in the configurational entropy of the shuttling wheel. We determine how the amount of gas adsorbed, the position of the wheel, and the differential energy of adsorption depend on temperature, pressure, and the interactions of the gas and wheel with the stations on the strut. Our model reveals that, compared to a rigid, Langmuir material, the chemistry of the RMS-MOF can be tuned to render gas adsorption more or less temperature sensitive and to release more or less heat upon adsorption. The model also uncovers that, if gas-wheel competition for a station is fierce, temperature influences the position of the wheel differently depending on the amount of gas adsorbed.

摘要

金属有机框架材料(MOFs)是模块化且可调节的纳米多孔材料,在气体存储、分离和传感领域有应用。将柔性/动态、气体响应性组件集成到MOFs中可赋予它们独特或增强的吸附特性。在此,我们探索了轮烷分子穿梭体(RMS)在其孔中赋予MOF的吸附特性。在RMS-MOF的晶胞中,大环轮与MOF支架的支柱机械互锁。轮在支柱上的站点之间穿梭,这些站点也是气体吸附位点。在类似于开创性的朗缪尔吸附模型的抽象层面上,我们提出并分析了一个RMS-MOF中气体吸附的简单统计力学模型,该模型考虑了:(i)轮与气体对支柱上位点的竞争,以及(ii)气体引起的穿梭轮构象熵的变化。我们确定了吸附气体的量、轮的位置以及吸附的微分能量如何取决于温度、压力以及气体和轮与支柱上站点的相互作用。我们的模型表明,与刚性的朗缪尔材料相比,RMS-MOF的化学性质可以进行调节,以使气体吸附对温度更敏感或更不敏感,并在吸附时释放或多或少的热量。该模型还揭示,如果气体与轮对一个站点的竞争激烈,温度对轮位置的影响会因吸附气体的量而异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验