Kolodzeiski Elena, Amirjalayer Saeed
Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany.
Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany.
Sci Adv. 2022 Jul;8(26):eabn4426. doi: 10.1126/sciadv.abn4426. Epub 2022 Jul 1.
Molecular machines enable external control of structural and dynamic phenomena at the atomic level. To efficiently transfer their tunable properties into designated functionalities, a detailed understanding of the impact of molecular embedding is needed. In particular, a comprehensive insight is fundamental to design hierarchical multifunctional systems that are inspired by biological cells. Here, we applied an on-the-fly trained force field to perform atomistic simulations of a systematically modified rotaxane functionalized metal-organic framework. Our atomistic studies reveal a symmetric and asymmetric interplay of the mechanically bonded rings (MBRs) within the framework depending on the local environment. As a result, their translational motion is modulated ranging from fast oscillatory behavior to cooperative and potentially directed shuttling. The derived picture of competitive interactions, which influence the operation mechanism of the MBRs embedded in these soft porous materials, promotes the development of responsive functional materials, which is a key step toward intelligent matter.
分子机器能够在原子水平上实现对结构和动态现象的外部控制。为了将其可调谐特性有效地转化为指定功能,需要详细了解分子嵌入的影响。特别是,全面的洞察对于设计受生物细胞启发的分层多功能系统至关重要。在这里,我们应用了一个即时训练的力场来对系统修饰的轮烷功能化金属有机框架进行原子模拟。我们的原子研究揭示了框架内机械键合环(MBR)根据局部环境的对称和不对称相互作用。结果,它们的平移运动从快速振荡行为到协同且可能定向的穿梭运动被调制。所得到的竞争相互作用图景影响了嵌入这些软多孔材料中的MBR的运行机制,推动了响应性功能材料的发展,这是迈向智能物质的关键一步。