Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.
Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, Greece.
FEBS Open Bio. 2022 May;12(5):1036-1049. doi: 10.1002/2211-5463.13011. Epub 2022 Mar 29.
The 24-h molecular clock is based on the stability of rhythmically expressed transcripts. The shortening of the poly(A) tail of mRNAs is often the first and rate-limiting step that determines the lifespan of a mRNA and is catalyzed by deadenylases. Herein, we determine the catalytic site of Hesperin, a recently described circadian deadenylase in plants, using a modified site-directed mutagenesis protocol and a custom vector, pATHRA. To explore the catalytic efficiency of AtHESPERIN, we investigated the effect of AMP and neomycin, and used molecular modeling simulations to propose a catalytic mechanism. Collectively, the biochemical and in silico results classify AtHESPERIN in the exonuclease-endonuclease-phosphatase deadenylase superfamily and contribute to the understanding of the intricate mechanisms of circadian mRNA turnover.
24 小时分子钟是基于节律表达的转录本的稳定性。mRNA 的 poly(A)尾巴缩短通常是决定 mRNA 寿命的第一步和限速步骤,该过程由脱腺苷酶催化。在此,我们使用改良的定点突变方案和定制载体 pATHRA 确定了 Hesperin 的催化位点,Hesperin 是一种最近在植物中描述的生物钟脱腺苷酶。为了探索 AtHESPERIN 的催化效率,我们研究了 AMP 和新霉素的影响,并使用分子建模模拟提出了一种催化机制。总之,生化和计算机模拟结果将 AtHESPERIN 归类为外切核酸酶-内切核酸酶-磷酸酶脱腺苷酶超家族,并有助于理解生物钟 mRNA 周转的复杂机制。