Suppr超能文献

生物钟去腺苷酸化酶 HESPERIN 的活性位点和催化机制的生化和计算鉴定。

Biochemical and in silico identification of the active site and the catalytic mechanism of the circadian deadenylase HESPERIN.

机构信息

Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece.

Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, Greece.

出版信息

FEBS Open Bio. 2022 May;12(5):1036-1049. doi: 10.1002/2211-5463.13011. Epub 2022 Mar 29.

Abstract

The 24-h molecular clock is based on the stability of rhythmically expressed transcripts. The shortening of the poly(A) tail of mRNAs is often the first and rate-limiting step that determines the lifespan of a mRNA and is catalyzed by deadenylases. Herein, we determine the catalytic site of Hesperin, a recently described circadian deadenylase in plants, using a modified site-directed mutagenesis protocol and a custom vector, pATHRA. To explore the catalytic efficiency of AtHESPERIN, we investigated the effect of AMP and neomycin, and used molecular modeling simulations to propose a catalytic mechanism. Collectively, the biochemical and in silico results classify AtHESPERIN in the exonuclease-endonuclease-phosphatase deadenylase superfamily and contribute to the understanding of the intricate mechanisms of circadian mRNA turnover.

摘要

24 小时分子钟是基于节律表达的转录本的稳定性。mRNA 的 poly(A)尾巴缩短通常是决定 mRNA 寿命的第一步和限速步骤,该过程由脱腺苷酶催化。在此,我们使用改良的定点突变方案和定制载体 pATHRA 确定了 Hesperin 的催化位点,Hesperin 是一种最近在植物中描述的生物钟脱腺苷酶。为了探索 AtHESPERIN 的催化效率,我们研究了 AMP 和新霉素的影响,并使用分子建模模拟提出了一种催化机制。总之,生化和计算机模拟结果将 AtHESPERIN 归类为外切核酸酶-内切核酸酶-磷酸酶脱腺苷酶超家族,并有助于理解生物钟 mRNA 周转的复杂机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4e2/9063446/c1b2117e959a/FEB4-12-1036-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验