Department of Physics, Virginia Tech, Blacksburg, VA 24060, United States.
Departments of Computer Science, Virginia Tech, Blacksburg, VA 24060, United States; Department of Physics, Virginia Tech, Blacksburg, VA 24060, United States; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA.
J Mol Biol. 2021 Mar 19;433(6):166683. doi: 10.1016/j.jmb.2020.10.017. Epub 2020 Oct 21.
The intrinsically disordered, positively charged H4 histone tail is important for chromatin structure and function. We have explored conformational ensembles of human H4 tail in solution, with varying levels of charge neutralization via acetylation or amino-acid substitutions such as K→Q. We have employed an explicit water model shown recently to be well suited for simulations of intrinsically disordered proteins. Upon progressive neutralization of the H4, its radius of gyration decreases linearly with the tail charge q, the trend is explained using a simple polymer model. While the wild type state (q=+8) is essentially a random coil, hyper-acetylated H4 (q=+3) is virtually as compact and stable as a globular protein of the same number of amino-acids. Conformational ensembles of acetylated H4 match the corresponding K→X substitutions only approximately: based on the ensemble similarity, we propose K→M as a possible alternative to the commonly used K→Q. Possible effects of the H4 tail compaction on chromatin structure are discussed within a qualitative model in which the chromatin is highly heterogeneous, easily inter-converting between various structural forms. We predict that upon progressive charge neutralization of the H4 tail, the least compact sub-states of chromatin de-condense first, followed by de-condensation of more compact structures, e.g. those that harbor a high fraction of stacked di-nucleosomes. The predicted hierarchy of DNA accessibility increase upon progressive acetylation of H4 might be utilized by the cell for selective DNA accessibility control.
组蛋白 H4 的无规则伸展的带正电荷的尾部对于染色质的结构和功能非常重要。我们在溶液中探索了人源 H4 尾部的构象集合体,通过乙酰化或氨基酸取代(如 K→Q)来改变其电荷中性化程度。我们采用了一种明确的水分子模型,该模型最近被证明非常适合模拟无规则伸展的蛋白质。随着 H4 电荷的逐渐中和,其回转半径与尾部电荷 q 呈线性关系,这种趋势可以用简单的聚合物模型来解释。虽然野生型状态(q=+8)基本上是无规则卷曲的,但超乙酰化的 H4(q=+3)几乎和具有相同氨基酸数量的球状蛋白质一样紧凑和稳定。乙酰化 H4 的构象集合体仅与相应的 K→X 取代大致匹配:根据集合体的相似性,我们提出 K→M 作为常用 K→Q 的替代物。我们在一个定性模型中讨论了 H4 尾部紧凑化对染色质结构的可能影响,在这个模型中,染色质高度异质,容易在各种结构形式之间相互转换。我们预测,随着 H4 尾部电荷逐渐中和,染色质中最不紧凑的亚态首先去凝聚,然后是更紧凑的结构去凝聚,例如那些含有高比例堆叠二核小体的结构。H4 乙酰化程度逐渐增加时预测的 DNA 可及性增加的层次结构可能被细胞用于选择性的 DNA 可及性控制。