Suppr超能文献

组蛋白 H4 尾部在通过乙酰化及其类似物中和电荷时发生显著的压缩,可能对染色质结构产生影响。

Significant compaction of H4 histone tail upon charge neutralization by acetylation and its mimics, possible effects on chromatin structure.

机构信息

Department of Physics, Virginia Tech, Blacksburg, VA 24060, United States.

Departments of Computer Science, Virginia Tech, Blacksburg, VA 24060, United States; Department of Physics, Virginia Tech, Blacksburg, VA 24060, United States; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA.

出版信息

J Mol Biol. 2021 Mar 19;433(6):166683. doi: 10.1016/j.jmb.2020.10.017. Epub 2020 Oct 21.

Abstract

The intrinsically disordered, positively charged H4 histone tail is important for chromatin structure and function. We have explored conformational ensembles of human H4 tail in solution, with varying levels of charge neutralization via acetylation or amino-acid substitutions such as K→Q. We have employed an explicit water model shown recently to be well suited for simulations of intrinsically disordered proteins. Upon progressive neutralization of the H4, its radius of gyration decreases linearly with the tail charge q, the trend is explained using a simple polymer model. While the wild type state (q=+8) is essentially a random coil, hyper-acetylated H4 (q=+3) is virtually as compact and stable as a globular protein of the same number of amino-acids. Conformational ensembles of acetylated H4 match the corresponding K→X substitutions only approximately: based on the ensemble similarity, we propose K→M as a possible alternative to the commonly used K→Q. Possible effects of the H4 tail compaction on chromatin structure are discussed within a qualitative model in which the chromatin is highly heterogeneous, easily inter-converting between various structural forms. We predict that upon progressive charge neutralization of the H4 tail, the least compact sub-states of chromatin de-condense first, followed by de-condensation of more compact structures, e.g. those that harbor a high fraction of stacked di-nucleosomes. The predicted hierarchy of DNA accessibility increase upon progressive acetylation of H4 might be utilized by the cell for selective DNA accessibility control.

摘要

组蛋白 H4 的无规则伸展的带正电荷的尾部对于染色质的结构和功能非常重要。我们在溶液中探索了人源 H4 尾部的构象集合体,通过乙酰化或氨基酸取代(如 K→Q)来改变其电荷中性化程度。我们采用了一种明确的水分子模型,该模型最近被证明非常适合模拟无规则伸展的蛋白质。随着 H4 电荷的逐渐中和,其回转半径与尾部电荷 q 呈线性关系,这种趋势可以用简单的聚合物模型来解释。虽然野生型状态(q=+8)基本上是无规则卷曲的,但超乙酰化的 H4(q=+3)几乎和具有相同氨基酸数量的球状蛋白质一样紧凑和稳定。乙酰化 H4 的构象集合体仅与相应的 K→X 取代大致匹配:根据集合体的相似性,我们提出 K→M 作为常用 K→Q 的替代物。我们在一个定性模型中讨论了 H4 尾部紧凑化对染色质结构的可能影响,在这个模型中,染色质高度异质,容易在各种结构形式之间相互转换。我们预测,随着 H4 尾部电荷逐渐中和,染色质中最不紧凑的亚态首先去凝聚,然后是更紧凑的结构去凝聚,例如那些含有高比例堆叠二核小体的结构。H4 乙酰化程度逐渐增加时预测的 DNA 可及性增加的层次结构可能被细胞用于选择性的 DNA 可及性控制。

相似文献

3
Binding Dynamics of Disordered Linker Histone H1 with a Nucleosomal Particle.
J Mol Biol. 2021 Mar 19;433(6):166881. doi: 10.1016/j.jmb.2021.166881. Epub 2021 Feb 20.
4
Nucleosome Histone Tail Conformation and Dynamics: Impacts of Lysine Acetylation and a Nearby Minor Groove Benzo[a]pyrene-Derived Lesion.
Biochemistry. 2017 Apr 11;56(14):1963-1973. doi: 10.1021/acs.biochem.6b01208. Epub 2017 Mar 22.
5
Binding of regulatory proteins to nucleosomes is modulated by dynamic histone tails.
Nat Commun. 2021 Sep 6;12(1):5280. doi: 10.1038/s41467-021-25568-6.
7
General Purpose Water Model Can Improve Atomistic Simulations of Intrinsically Disordered Proteins.
J Chem Theory Comput. 2019 Apr 9;15(4):2620-2634. doi: 10.1021/acs.jctc.8b01123. Epub 2019 Mar 26.
8
Breaths, Twists, and Turns of Atomistic Nucleosomes.
J Mol Biol. 2021 Mar 19;433(6):166744. doi: 10.1016/j.jmb.2020.166744. Epub 2020 Dec 10.
9
The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association.
Nucleic Acids Res. 2011 Mar;39(5):1680-91. doi: 10.1093/nar/gkq900. Epub 2010 Nov 2.
10
Structure and binding of the H4 histone tail and the effects of lysine 16 acetylation.
Phys Chem Chem Phys. 2011 Feb 21;13(7):2911-21. doi: 10.1039/c0cp01487g. Epub 2010 Dec 15.

引用本文的文献

1
Energy Landscapes and Structural Plasticity of Intrinsically Disordered Histones.
J Chem Inf Model. 2025 Aug 25;65(16):8679-8687. doi: 10.1021/acs.jcim.4c02269. Epub 2025 Aug 6.
2
The epigenetic mechanisms involved in the treatment resistance of glioblastoma.
Cancer Drug Resist. 2025 Mar 13;8:12. doi: 10.20517/cdr.2024.157. eCollection 2025.
3
Acetylation-Dependent Compaction of the Histone H4 Tail Ensemble.
J Phys Chem B. 2024 Oct 31;128(43):10636-10649. doi: 10.1021/acs.jpcb.4c05701. Epub 2024 Oct 22.
5
Conformational Dynamics of the Nucleosomal Histone H2B Tails Revealed by Molecular Dynamics Simulations.
J Chem Inf Model. 2024 Jun 24;64(12):4709-4726. doi: 10.1021/acs.jcim.4c00059. Epub 2024 Jun 12.
6
Using NMR diffusion data to validate MD models of disordered proteins: Test case of N-terminal tail of histone H4.
Biophys J. 2024 Jan 2;123(1):80-100. doi: 10.1016/j.bpj.2023.11.020. Epub 2023 Nov 20.
7
How phosphorylation impacts intrinsically disordered proteins and their function.
Essays Biochem. 2022 Dec 16;66(7):901-913. doi: 10.1042/EBC20220060.
8
Binding of regulatory proteins to nucleosomes is modulated by dynamic histone tails.
Nat Commun. 2021 Sep 6;12(1):5280. doi: 10.1038/s41467-021-25568-6.

本文引用的文献

1
Physical and data structure of 3D genome.
Sci Adv. 2020 Jan 10;6(2):eaay4055. doi: 10.1126/sciadv.aay4055. eCollection 2020 Jan.
2
General Purpose Water Model Can Improve Atomistic Simulations of Intrinsically Disordered Proteins.
J Chem Theory Comput. 2019 Apr 9;15(4):2620-2634. doi: 10.1021/acs.jctc.8b01123. Epub 2019 Mar 26.
3
The Free Energy Landscape of Internucleosome Interactions and Its Relation to Chromatin Fiber Structure.
ACS Cent Sci. 2019 Feb 27;5(2):341-348. doi: 10.1021/acscentsci.8b00836. Epub 2019 Jan 24.
4
The nucleosome: from structure to function through physics.
Curr Opin Struct Biol. 2019 Jun;56:119-130. doi: 10.1016/j.sbi.2018.11.003. Epub 2019 Jan 30.
5
Sex-specific phenotypes of histone H4 point mutants establish dosage compensation as the critical function of H4K16 acetylation in .
Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):13336-13341. doi: 10.1073/pnas.1817274115. Epub 2018 Dec 10.
6
Why Computed Protein Folding Landscapes Are Sensitive to the Water Model.
J Chem Theory Comput. 2019 Jan 8;15(1):625-636. doi: 10.1021/acs.jctc.8b00485. Epub 2018 Dec 20.
7
Computational Studies of Intrinsically Disordered Proteins.
J Phys Chem B. 2018 Nov 21;122(46):10455-10469. doi: 10.1021/acs.jpcb.8b09029. Epub 2018 Nov 8.
8
Modulation of nucleosomal DNA accessibility via charge-altering post-translational modifications in histone core.
Epigenetics Chromatin. 2018 Mar 16;11(1):11. doi: 10.1186/s13072-018-0181-5.
9
Measuring Nanoscale Chromatin Heterogeneity with Partial Wave Spectroscopic Microscopy.
Methods Mol Biol. 2018;1745:337-360. doi: 10.1007/978-1-4939-7680-5_19.
10
A systematic analysis of nucleosome core particle and nucleosome-nucleosome stacking structure.
Sci Rep. 2018 Jan 24;8(1):1543. doi: 10.1038/s41598-018-19875-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验