Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
Shraga Segal Department of Microbiology, Immunology and Genetics and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
Molecules. 2020 Oct 21;25(20):4850. doi: 10.3390/molecules25204850.
Receptor tyrosine kinases (RTKs) are major players in signal transduction, regulating cellular activities in both normal regeneration and malignancy. Thus, many RTKs, c-Kit among them, play key roles in the function of both normal and neoplastic cells, and as such constitute attractive targets for therapeutic intervention. We thus sought to manipulate the self-association of stem cell factor (SCF), the cognate ligand of c-Kit, and hence its suboptimal affinity and activation potency for c-Kit. To this end, we used directed evolution to engineer SCF variants having different c-Kit activation potencies. Our yeast-displayed SCF mutant (SCF) library screens identified altered dimerization potential and increased affinity for c-Kit by specific SCF-variants. We demonstrated the delicate balance between SCF homo-dimerization, c-Kit binding, and agonistic potencies by structural studies, in vitro binding assays and a functional angiogenesis assay. Importantly, our findings showed that a monomeric SCF variant exhibited superior agonistic potency vs. the wild-type SCF protein and vs. other high-affinity dimeric SCF variants. Our data showed that action of the monomeric ligands in binding to the RTK monomers and inducing receptor dimerization and hence activation was superior to that of the wild-type dimeric ligand, which has a higher affinity to RTK dimers but a lower activation potential. The findings of this study on the binding and c-Kit activation of engineered SCF variants thus provides insights into the structure-function dynamics of ligands and RTKs.
受体酪氨酸激酶 (RTKs) 是信号转导的主要参与者,调节正常再生和恶性肿瘤中细胞的活动。因此,许多 RTKs,包括 c-Kit,在正常和肿瘤细胞的功能中发挥关键作用,因此构成了治疗干预的有吸引力的靶点。因此,我们试图操纵干细胞因子 (SCF) 的自缔合,c-Kit 的同源配体,从而改变其对 c-Kit 的亚最佳亲和力和激活效力。为此,我们使用定向进化来设计具有不同 c-Kit 激活潜力的 SCF 变体。我们的酵母展示 SCF 突变体 (SCF) 文库筛选鉴定出具有不同二聚化潜力和增加与 c-Kit 亲和力的特定 SCF 变体。我们通过结构研究、体外结合测定和功能性血管生成测定,证明了 SCF 同二聚化、c-Kit 结合和激动剂潜力之间的微妙平衡。重要的是,我们的研究结果表明,单体 SCF 变体与野生型 SCF 蛋白和其他高亲和力二聚体 SCF 变体相比,表现出优越的激动剂效力。我们的数据表明,单体配体在与 RTK 单体结合并诱导受体二聚化从而激活方面的作用优于野生型二聚体配体,后者对 RTK 二聚体具有更高的亲和力,但激活潜力较低。因此,本研究中关于工程化 SCF 变体的结合和 c-Kit 激活的发现提供了对配体和 RTK 的结构功能动力学的深入了解。