Suppr超能文献

利用卷积神经网络和超分辨率显微镜改进化石花粉分类学。

Improving the taxonomy of fossil pollen using convolutional neural networks and superresolution microscopy.

机构信息

Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213.

出版信息

Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28496-28505. doi: 10.1073/pnas.2007324117. Epub 2020 Oct 23.

Abstract

Taxonomic resolution is a major challenge in palynology, largely limiting the ecological and evolutionary interpretations possible with deep-time fossil pollen data. We present an approach for fossil pollen analysis that uses optical superresolution microscopy and machine learning to create a quantitative and higher throughput workflow for producing palynological identifications and hypotheses of biological affinity. We developed three convolutional neural network (CNN) classification models: maximum projection (MPM), multislice (MSM), and fused (FM). We trained the models on the pollen of 16 genera of the legume tribe Amherstieae, and then used these models to constrain the biological classifications of 48 fossil specimens from the Paleocene, Eocene, and Miocene of western Africa and northern South America. All models achieved average accuracies of 83 to 90% in the classification of the extant genera, and the majority of fossil identifications (86%) showed consensus among at least two of the three models. Our fossil identifications support the paleobiogeographic hypothesis that Amherstieae originated in Paleocene Africa and dispersed to South America during the Paleocene-Eocene Thermal Maximum (56 Ma). They also raise the possibility that at least three Amherstieae genera (, , and ) may have diverged earlier in the Cenozoic than predicted by molecular phylogenies.

摘要

分类分辨率是孢粉学中的一个主要挑战,在很大程度上限制了利用古花粉数据进行生态和进化解释的可能性。我们提出了一种用于化石花粉分析的方法,该方法结合了光学超分辨率显微镜和机器学习,创建了一种定量的、高通量的工作流程,用于生成孢粉学鉴定和生物亲缘关系的假说。我们开发了三个卷积神经网络(CNN)分类模型:最大投影(MPM)、多切片(MSM)和融合(FM)。我们在豆科植物族 Amherstieae 的 16 个属的花粉上对模型进行了训练,然后使用这些模型来限制来自西非和南美洲北部古近纪、始新世和中新世的 48 个化石样本的生物分类。所有模型在分类现有属时的平均准确率达到 83%到 90%,并且大多数化石鉴定(86%)在三个模型中的至少两个中显示出共识。我们的化石鉴定支持 Amherstieae 起源于古新世非洲并在古新世-始新世极热事件期间(56 Ma)扩散到南美洲的古生物地理假说。它们还提出了这样一种可能性,即在新生代,至少有三个 Amherstieae 属(、和)的分化时间可能比分子系统发育预测的更早。

相似文献

10

引用本文的文献

3
Pollen image manipulation and projection using latent space.利用潜在空间进行花粉图像操纵与投影。
Front Plant Sci. 2025 Feb 28;16:1539128. doi: 10.3389/fpls.2025.1539128. eCollection 2025.
4
The evolutionary history evident in grass pollen morphology.草花粉形态中明显的进化史。
New Phytol. 2025 Apr;246(1):8-11. doi: 10.1111/nph.20387. Epub 2025 Jan 9.

本文引用的文献

1
Current trends in studies of long-term plant community dynamics.长期植物群落动态研究的当前趋势
New Phytol. 1995 Aug;130(4):469-494. doi: 10.1111/j.1469-8137.1995.tb04325.x.
5
Miocene flooding events of western Amazonia.上新世时期的亚马逊西部地区洪泛事件。
Sci Adv. 2017 May 3;3(5):e1601693. doi: 10.1126/sciadv.1601693. eCollection 2017 May.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验