Suppr超能文献

动力蛋白-2 R465W 突变诱导高度有序寡聚结构的远程干扰。

Dynamin-2 R465W mutation induces long range perturbation in highly ordered oligomeric structures.

机构信息

Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Valparaiso, Chile.

Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Av. San Miguel 3605, Talca, Chile.

出版信息

Sci Rep. 2020 Oct 23;10(1):18151. doi: 10.1038/s41598-020-75216-0.

Abstract

High order oligomers are crucial for normal cell physiology, and protein function perturbed by missense mutations underlies several autosomal dominant diseases. Dynamin-2 is one of such protein forming helical oligomers that catalyze membrane fission. Mutations in this protein, where R465W is the most frequent, cause dominant centronuclear myopathy, but the molecular mechanisms underpinning the functional modifications remain to be investigated. To unveil the structural impact of this mutation in dynamin-2, we used full-atom molecular dynamics simulations and coarse-grained models and built dimers and helices of wild-type (WT) monomers, mutant monomers, or both WT and mutant monomers combined. Our results show that the mutation R465W causes changes in the interactions with neighbor amino acids that propagate through the oligomer. These new interactions perturb the contact between monomers and favor an extended conformation of the bundle signaling element (BSE), a dynamin region that transmits the conformational changes from the GTPase domain to the rest of the protein. This extended configuration of the BSE that is only relevant in the helices illustrates how a small change in the microenvironment surrounding a single residue can propagate through the oligomer structures of dynamin explaining how dominance emerges in large protein complexes.

摘要

高级寡聚物对于正常的细胞生理学至关重要,由错义突变引起的蛋白质功能紊乱是几种常染色体显性疾病的基础。动力蛋白-2 就是这样一种形成螺旋寡聚物的蛋白质,它可以催化膜裂变。该蛋白的突变,其中 R465W 是最常见的,导致显性中心体肌病,但支持功能修饰的分子机制仍有待研究。为了揭示该突变在动力蛋白-2 中的结构影响,我们使用全原子分子动力学模拟和粗粒化模型构建了野生型 (WT) 单体、突变单体或 WT 和突变单体组合的二聚体和螺旋。我们的结果表明,突变 R465W 导致与相邻氨基酸相互作用的变化,这些变化通过寡聚体传播。这些新的相互作用破坏了单体之间的接触,并有利于束状信号元件 (BSE) 的扩展构象,BSE 是动力蛋白的一个区域,它将构象变化从 GTP 酶结构域传递到蛋白质的其余部分。这种仅在螺旋中出现的 BSE 的扩展构象说明了微小的微环境变化如何在动力蛋白的寡聚体结构中传播,解释了在大型蛋白质复合物中如何出现显性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64ef/7584598/5fd6aaa37206/41598_2020_75216_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验