Eseverri Álvaro, Baysal Can, Medina Vicente, Capell Teresa, Christou Paul, Rubio Luis M, Caro Elena
Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain.
Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
Front Plant Sci. 2020 Sep 25;11:560701. doi: 10.3389/fpls.2020.560701. eCollection 2020.
Nucleus-encoded plastid proteins are synthesized as precursors with N-terminal targeting signals called transit peptides (TPs), which mediate interactions with the translocon complexes at the outer (TOC) and inner (TIC) plastid membranes. These complexes exist in multiple isoforms in higher plants and show differential specificity and tissue abundance. While some show specificity for photosynthesis-related precursor proteins, others distinctly recognize nonphotosynthetic and housekeeping precursor proteins. Here we used TPs from four proteins, three related to photosynthesis (chlorophyll a/b binding protein, Rubisco activase) and photo-protection (tocopherol cyclase) and one involved in the assimilation of ammonium into amino-acids, and whose expression is most abundant in the root (ferredoxin dependent glutamate synthase 2), to determine whether they were able to mediate import of a nuclear-encoded marker protein into plastids of different tissues of a dicot and a monocot species. In , import and processing efficiency was high in all cases, while TP from the rice Rubisco small chain 1, drove very low import in Arabidopsis tissues. Noteworthy, our results show that Arabidopsis photosynthesis TPs also mediate plastid import in rice callus, and in leaf and root tissues with almost a 100% efficiency, providing new biotechnological tools for crop improvement strategies based on recombinant protein accumulation in plastids by the expression of nuclear-encoded transgenes.
核编码的质体蛋白以前体形式合成,其N端靶向信号称为转运肽(TPs),转运肽介导与质体外膜(TOC)和内膜(TIC)上的转运体复合物的相互作用。这些复合物在高等植物中以多种异构体形式存在,并表现出不同的特异性和组织丰度。一些对光合作用相关前体蛋白具有特异性,而另一些则明显识别非光合和管家前体蛋白。在这里,我们使用了来自四种蛋白质的转运肽,其中三种与光合作用相关(叶绿素a/b结合蛋白、Rubisco活化酶)和光保护(生育酚环化酶),另一种参与铵同化形成氨基酸,其在根中表达最为丰富(铁氧还蛋白依赖性谷氨酸合酶2),以确定它们是否能够介导核编码标记蛋白导入双子叶植物和单子叶植物不同组织的质体中。在实验中,所有情况下导入和加工效率都很高,而来自水稻Rubisco小链1的转运肽在拟南芥组织中的导入率非常低。值得注意的是,我们的结果表明,拟南芥光合作用转运肽也能介导水稻愈伤组织以及叶和根组织中的质体导入,效率几乎达到100%,这为基于通过核编码转基因表达在质体中积累重组蛋白的作物改良策略提供了新的生物技术工具。