Suppr超能文献

具有泄漏积分器神经元的回声状态网络的优化与应用

Optimization and applications of echo state networks with leaky-integrator neurons.

作者信息

Jaeger Herbert, Lukosevicius Mantas, Popovici Dan, Siewert Udo

机构信息

Jacobs University Bremen, School of Engineering and Science, 28759 Bremen, Germany.

出版信息

Neural Netw. 2007 Apr;20(3):335-52. doi: 10.1016/j.neunet.2007.04.016. Epub 2007 May 3.

Abstract

Standard echo state networks (ESNs) are built from simple additive units with a sigmoid activation function. Here we investigate ESNs whose reservoir units are leaky integrator units. Units of this type have individual state dynamics, which can be exploited in various ways to accommodate the network to the temporal characteristics of a learning task. We present stability conditions, introduce and investigate a stochastic gradient descent method for the optimization of the global learning parameters (input and output feedback scalings, leaking rate, spectral radius) and demonstrate the usefulness of leaky-integrator ESNs for (i) learning very slow dynamic systems and replaying the learnt system at different speeds, (ii) classifying relatively slow and noisy time series (the Japanese Vowel dataset--here we obtain a zero test error rate), and (iii) recognizing strongly time-warped dynamic patterns.

摘要

标准回声状态网络(ESN)由具有 sigmoid 激活函数的简单加法单元构建而成。在此,我们研究其储备单元为泄漏积分器单元的 ESN。这种类型的单元具有个体状态动态特性,可通过多种方式加以利用,以使网络适应学习任务的时间特征。我们给出稳定性条件,引入并研究一种用于优化全局学习参数(输入和输出反馈缩放、泄漏率、谱半径)的随机梯度下降方法,并证明泄漏积分器 ESN 对于(i)学习非常缓慢的动态系统并以不同速度重放所学系统,(ii)对相对缓慢且有噪声的时间序列进行分类(日本元音数据集——在此我们获得零测试错误率),以及(iii)识别严重时间扭曲的动态模式的有用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验