Suppr超能文献

利用人工智能方法预测 COVID-19 患者的个体病死率。

Individual-Level Fatality Prediction of COVID-19 Patients Using AI Methods.

机构信息

Department of Geography and Geoinformation Science, George Mason University, Fairfax, VA, United States.

National Science Foundation (NSF) Spatiotemporal Innovation Center, George Mason University, Fairfax, VA, United States.

出版信息

Front Public Health. 2020 Sep 30;8:587937. doi: 10.3389/fpubh.2020.587937. eCollection 2020.

Abstract

The global covid-19 pandemic puts great pressure on medical resources worldwide and leads healthcare professionals to question which individuals are in imminent need of care. With appropriate data of each patient, hospitals can heuristically predict whether or not a patient requires immediate care. We adopted a deep learning model to predict fatality of individuals tested positive given the patient's underlying health conditions, age, sex, and other factors. As the allocation of resources toward a vulnerable patient could mean the difference between life and death, a fatality prediction model serves as a valuable tool to healthcare workers in prioritizing resources and hospital space. The models adopted were evaluated and refined using the metrics of accuracy, specificity, and sensitivity. After data preprocessing and training, our model is able to predict whether a covid-19 confirmed patient is likely to be dead or not, given their information and disposition. The metrics between the different models are compared. Results indicate that the deep learning model outperforms other machine learning models to solve this rare event prediction problem.

摘要

全球新冠疫情大流行给全球医疗资源带来巨大压力,使医疗专业人员质疑哪些人急需护理。有了每个患者的适当数据,医院可以启发式地预测患者是否需要立即护理。我们采用了深度学习模型,根据患者的基本健康状况、年龄、性别和其他因素预测阳性患者的死亡率。由于向弱势患者分配资源可能意味着生死之间的差异,因此死亡率预测模型是医疗工作者在优先分配资源和医院空间方面的宝贵工具。采用的模型使用准确性、特异性和敏感性等指标进行了评估和改进。在数据预处理和训练之后,我们的模型能够根据患者的信息和病情预测新冠确诊患者是否可能死亡。比较了不同模型之间的指标。结果表明,深度学习模型在解决这种罕见事件预测问题方面优于其他机器学习模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验