Behbehani Mehri, Glen Adam, Taylor Caroline S, Schuhmacher Alexander, Claeyssens Frederik, Haycock John W
Department of Materials Science and Engineering, The University of Sheffield, UK.
Faculty of Applied Chemistry, Reutlingen University, Germany.
Int J Bioprint. 2017 Dec 20;4(1):123. doi: 10.18063/IJB.v4i1.123. eCollection 2018.
Autografts are the current gold standard for large peripheral nerve defects in clinics despite the frequently occurring side effects like donor site morbidity. Hollow nerve guidance conduits (NGC) are proposed alternatives to autografts, but failed to bridge gaps exceeding 3 cm in humans. Internal NGC guidance cues like microfibres are believed to enhance hollow NGCs by giving additional physical support for directed regeneration of Schwann cells and axons. In this study, we report a new 3D model that allows the evaluation of different intraluminal fibre scaffolds inside a complete NGC. The performance of electrospun polycaprolactone (PCL) microfibres inside 5 mm long polyethylene glycol (PEG) conduits were investigated in neuronal cell and dorsal root ganglion (DRG) cultures . Z-stack confocal microscopy revealed the aligned orientation of neuronal cells along the fibres throughout the whole NGC length and depth. The number of living cells in the centre of the scaffold was not significantly different to the tissue culture plastic (TCP) control. For analysis, DRGs were placed on top of fibre-filled NGCs to simulate the proximal nerve stump. In 21 days of culture, Schwann cells and axons infiltrated the conduits along the microfibres with 2.2 ± 0.37 mm and 2.1 ± 0.33 mm, respectively. We conclude that this model can help define internal NGC scaffolds in the future by comparing different fibre materials, composites and dimensions in one setup prior to animal testing.
自体移植物是目前临床上治疗大型周围神经缺损的金标准,尽管常出现供体部位发病等副作用。空心神经引导导管(NGC)被提议作为自体移植物的替代物,但在人体中未能桥接超过3厘米的间隙。像微纤维这样的内部NGC引导线索被认为可以通过为雪旺细胞和轴突的定向再生提供额外的物理支持来增强空心NGC。在本研究中,我们报告了一种新的三维模型,该模型允许在完整的NGC内部评估不同的腔内纤维支架。在神经元细胞和背根神经节(DRG)培养中研究了5毫米长的聚乙二醇(PEG)导管内电纺聚己内酯(PCL)微纤维的性能。Z轴堆叠共聚焦显微镜显示,在整个NGC长度和深度上,神经元细胞沿着纤维排列。支架中心的活细胞数量与组织培养塑料(TCP)对照无显著差异。为了进行分析,将DRG放置在纤维填充的NGC顶部以模拟近端神经残端。在培养21天时,雪旺细胞和轴突分别沿着微纤维以2.2±0.37毫米和2.1±0.33毫米的距离侵入导管。我们得出结论,该模型可以通过在动物试验前在一个设置中比较不同的纤维材料、复合材料和尺寸,在未来帮助定义内部NGC支架。