Suppr超能文献

相似文献

1
Peripheral nerve growth within a hydrogel microchannel scaffold supported by a kink-resistant conduit.
J Biomed Mater Res A. 2017 Dec;105(12):3392-3399. doi: 10.1002/jbm.a.36186. Epub 2017 Sep 25.
3
Scaffolds from block polyurethanes based on poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration.
Biomaterials. 2014 May;35(14):4266-77. doi: 10.1016/j.biomaterials.2014.02.013. Epub 2014 Feb 26.
4
The effect of four types of artificial nerve graft structures on the repair of 10-mm rat sciatic nerve gap.
J Biomed Mater Res A. 2017 Nov;105(11):3077-3085. doi: 10.1002/jbm.a.36172. Epub 2017 Aug 21.
5
Effect of an Epineurial-Like Biohybrid Nerve Conduit on Nerve Regeneration.
Cell Transplant. 2016;25(3):559-74. doi: 10.3727/096368915X688920. Epub 2015 Aug 21.
6
Short and long gap peripheral nerve repair with magnesium metal filaments.
J Biomed Mater Res A. 2017 Nov;105(11):3148-3158. doi: 10.1002/jbm.a.36176. Epub 2017 Aug 24.
7
Permeable guidance channels containing microfilament scaffolds enhance axon growth and maturation.
J Biomed Mater Res A. 2005 Nov 1;75(2):374-86. doi: 10.1002/jbm.a.30432.
8
Hierarchically Ordered Porous and High-Volume Polycaprolactone Microchannel Scaffolds Enhanced Axon Growth in Transected Spinal Cords.
Tissue Eng Part A. 2017 May;23(9-10):415-425. doi: 10.1089/ten.TEA.2016.0378. Epub 2017 Mar 31.
9
Rapid 3D printing of functional nanoparticle-enhanced conduits for effective nerve repair.
Acta Biomater. 2019 May;90:49-59. doi: 10.1016/j.actbio.2019.03.047. Epub 2019 Mar 28.
10
In vivo guided vascular regeneration with a non-porous elastin-like polypeptide hydrogel tubular scaffold.
J Biomed Mater Res A. 2017 Jun;105(6):1746-1755. doi: 10.1002/jbm.a.36018. Epub 2017 Apr 3.

引用本文的文献

1
3D Printed Nerve Guidance Conduit for Biologics-Free Nerve Regeneration and Vascular Integration.
bioRxiv. 2025 May 7:2025.04.30.651603. doi: 10.1101/2025.04.30.651603.
3
Advances in biomaterial-based tissue engineering for peripheral nerve injury repair.
Bioact Mater. 2024 Dec 13;46:150-172. doi: 10.1016/j.bioactmat.2024.12.005. eCollection 2025 Apr.
4
A novel flexible nerve guidance conduit promotes nerve regeneration while providing excellent mechanical properties.
Neural Regen Res. 2025 Jul 1;20(7):2084-2094. doi: 10.4103/NRR.NRR-D-23-01792. Epub 2024 Apr 3.
5
Scaffold design considerations for peripheral nerve regeneration.
J Neural Eng. 2024 Jul 23;21(4). doi: 10.1088/1741-2552/ad628d.
6
Analogies and Differences Between Dental Stem Cells: Focus on Secretome in Combination with Scaffolds in Neurological Disorders.
Stem Cell Rev Rep. 2024 Jan;20(1):159-174. doi: 10.1007/s12015-023-10652-9. Epub 2023 Nov 14.
7
Matching mechanical heterogeneity of the native spinal cord augments axon infiltration in 3D-printed scaffolds.
Biomaterials. 2023 Apr;295:122061. doi: 10.1016/j.biomaterials.2023.122061. Epub 2023 Feb 16.
8
The role of mechanobiology on the Schwann cell response: A tissue engineering perspective.
Front Cell Neurosci. 2022 Aug 10;16:948454. doi: 10.3389/fncel.2022.948454. eCollection 2022.
9
Engineered Schwann Cell-Based Therapies for Injury Peripheral Nerve Reconstruction.
Front Cell Neurosci. 2022 May 6;16:865266. doi: 10.3389/fncel.2022.865266. eCollection 2022.
10
Hydrogel, Electrospun and Composite Materials for Bone/Cartilage and Neural Tissue Engineering.
Materials (Basel). 2021 Nov 15;14(22):6899. doi: 10.3390/ma14226899.

本文引用的文献

1
Characterizing the degradation of alginate hydrogel for use in multilumen scaffolds for spinal cord repair.
J Biomed Mater Res A. 2016 Mar;104(3):611-619. doi: 10.1002/jbm.a.35600. Epub 2015 Nov 12.
2
Peripheral nerve injuries treatment: a systematic review.
Cell Biochem Biophys. 2014 Apr;68(3):449-54. doi: 10.1007/s12013-013-9742-1.
3
Channel density and porosity of degradable bridging scaffolds on axon growth after spinal injury.
Biomaterials. 2013 Mar;34(9):2213-20. doi: 10.1016/j.biomaterials.2012.12.002. Epub 2013 Jan 2.
4
Templated agarose scaffolds for the support of motor axon regeneration into sites of complete spinal cord transection.
Biomaterials. 2013 Feb;34(5):1529-36. doi: 10.1016/j.biomaterials.2012.10.070. Epub 2012 Nov 23.
5
Fate of combat nerve injury.
J Orthop Trauma. 2012 Nov;26(11):e198-203. doi: 10.1097/BOT.0b013e31823f000e.
6
Precision microchannel scaffolds for central and peripheral nervous system repair.
J Mater Sci Mater Med. 2011 Sep;22(9):2119-30. doi: 10.1007/s10856-011-4387-3. Epub 2011 Jul 16.
7
Increasing capillary diameter and the incorporation of gelatin enhance axon outgrowth in alginate-based anisotropic hydrogels.
Acta Biomater. 2011 Jul;7(7):2826-34. doi: 10.1016/j.actbio.2011.04.006. Epub 2011 Apr 16.
8
FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy.
Injury. 2012 May;43(5):553-72. doi: 10.1016/j.injury.2010.12.030. Epub 2011 Jan 26.
9
Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration.
Prog Neurobiol. 2011 Feb;93(2):204-30. doi: 10.1016/j.pneurobio.2010.11.002. Epub 2010 Dec 2.
10
Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds.
Biomaterials. 2010 Sep;31(26):6719-29. doi: 10.1016/j.biomaterials.2010.04.035. Epub 2010 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验