Arab Wafaa, Rauf Sakandar, Al-Harbi Ohoud, Hauser Charlotte A E
Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
Electron Microscopy, Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal, KSA.
Int J Bioprint. 2018 Jul 13;4(2):129. doi: 10.18063/IJB.v4i2.129. eCollection 2018.
The ability of skeletal muscle to self-repair after a traumatic injury, tumor ablation, or muscular disease is slow and limited, and the capacity of skeletal muscle to self-regenerate declines steeply with age. Tissue engineering of functional skeletal muscle using 3D bioprinting technology is promising for creating tissue constructs that repair and promote regeneration of damaged tissue. Hydrogel scaffolds used as biomaterials for skeletal muscle tissue engineering can provide chemical, physical and mechanical cues to the cells in three dimensions thus promoting regeneration. Herein, we have developed two synthetically designed novel tetramer peptide biomaterials. These peptides are self-assembling into a nanofibrous 3D network, entrapping 99.9% water and mimicking the native collagen of an extracellular matrix. Different biocompatibility assays including MTT, 3D cell viability assay, cytotoxicity assay and live-dead assay confirm the biocompatibility of these peptide hydrogels for mouse myoblast cells (C2C12). Immunofluorescence analysis of cell-laden hydrogels revealed that the proliferation of C2C12 cells was well-aligned in the peptide hydrogels compared to the alginategelatin control. These results indicate that these peptide hydrogels are suitable for skeletal muscle tissue engineering. Finally, we tested the printability of the peptide bioinks using a commercially available 3D bioprinter. The ability to print these hydrogels will enable future development of 3D bioprinted scaffolds containing skeletal muscle myoblasts for tissue engineering applications.
骨骼肌在遭受创伤性损伤、肿瘤消融或肌肉疾病后自我修复的能力缓慢且有限,并且骨骼肌自我再生的能力会随着年龄的增长而急剧下降。利用3D生物打印技术进行功能性骨骼肌组织工程有望创建能够修复和促进受损组织再生的组织构建体。用作骨骼肌组织工程生物材料的水凝胶支架可以在三维空间中为细胞提供化学、物理和机械信号,从而促进再生。在此,我们开发了两种合成设计的新型四聚体肽生物材料。这些肽自组装成纳米纤维三维网络,包裹99.9%的水,并模拟细胞外基质的天然胶原蛋白。包括MTT、3D细胞活力测定、细胞毒性测定和活死测定在内的不同生物相容性测定证实了这些肽水凝胶对小鼠成肌细胞(C2C12)的生物相容性。对负载细胞的水凝胶进行免疫荧光分析表明,与藻酸盐-明胶对照相比,C2C12细胞在肽水凝胶中的增殖排列良好。这些结果表明,这些肽水凝胶适用于骨骼肌组织工程。最后,我们使用市售的3D生物打印机测试了肽生物墨水的可打印性。打印这些水凝胶的能力将使未来能够开发用于组织工程应用的含有骨骼肌成肌细胞的3D生物打印支架。