Suppr超能文献

使用探头运动跟踪在常规胎儿超声扫描中区分操作者技能

Differentiating Operator Skill during Routine Fetal Ultrasound Scanning using Probe Motion Tracking.

作者信息

Wang Yipei, Droste Richard, Jiao Jianbo, Sharma Harshita, Drukker Lior, Papageorghiou Aris T, Noble J Alison

机构信息

Institute of Biomedical Engineering, University of Oxford, Oxford, UK.

Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK.

出版信息

Med Ultrasound Preterm Perinat Paediatr Image Anal (2020). 2020 Oct;12437:180-188. doi: 10.1007/978-3-030-60334-2_18. Epub 2020 Oct 1.

Abstract

In this paper, we consider differentiating operator skill during fetal ultrasound scanning using probe motion tracking. We present a novel convolutional neural network-based deep learning framework to model ultrasound probe motion in order to classify operator skill levels, that is invariant to operators' personal scanning styles. In this study, probe motion data during routine second-trimester fetal ultrasound scanning was acquired by operators of known experience levels (2 newly-qualified operators and 10 expert operators). The results demonstrate that the proposed model can successfully learn underlying probe motion features that distinguish operator skill levels during routine fetal ultrasound with 95% accuracy.

摘要

在本文中,我们考虑使用探头运动跟踪来区分胎儿超声扫描过程中的操作者技能。我们提出了一种基于卷积神经网络的新型深度学习框架,用于对超声探头运动进行建模,以对操作者技能水平进行分类,该框架对操作者的个人扫描风格具有不变性。在本研究中,由具有已知经验水平的操作者(2名新合格操作者和10名专家操作者)采集了常规孕中期胎儿超声扫描过程中的探头运动数据。结果表明,所提出的模型能够成功学习到区分常规胎儿超声检查中操作者技能水平的潜在探头运动特征,准确率达95%。

相似文献

1
Differentiating Operator Skill during Routine Fetal Ultrasound Scanning using Probe Motion Tracking.
Med Ultrasound Preterm Perinat Paediatr Image Anal (2020). 2020 Oct;12437:180-188. doi: 10.1007/978-3-030-60334-2_18. Epub 2020 Oct 1.
2
Knowledge representation and learning of operator clinical workflow from full-length routine fetal ultrasound scan videos.
Med Image Anal. 2021 Apr;69:101973. doi: 10.1016/j.media.2021.101973. Epub 2021 Jan 23.
3
Machine learning-based analysis of operator pupillary response to assess cognitive workload in clinical ultrasound imaging.
Comput Biol Med. 2021 Aug;135:104589. doi: 10.1016/j.compbiomed.2021.104589. Epub 2021 Jun 20.
4
Task model-specific operator skill assessment in routine fetal ultrasound scanning.
Int J Comput Assist Radiol Surg. 2022 Aug;17(8):1437-1444. doi: 10.1007/s11548-022-02642-y. Epub 2022 May 12.
5
FAST skill assessment from kinematics data using convolutional neural networks.
Int J Comput Assist Radiol Surg. 2024 Jan;19(1):43-49. doi: 10.1007/s11548-023-02908-z. Epub 2023 Apr 24.
6
A Machine Learning Method for Automated Description and Workflow Analysis of First Trimester Ultrasound Scans.
IEEE Trans Med Imaging. 2023 May;42(5):1301-1313. doi: 10.1109/TMI.2022.3226274. Epub 2023 May 2.
7
Multi-Modal Learning from Video, Eye Tracking, and Pupillometry for Operator Skill Characterization in Clinical Fetal Ultrasound.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:1646-1649. doi: 10.1109/ISBI48211.2021.9433863. Epub 2021 May 25.
9
Objective assessment of operator performance during ultrasound-guided procedures.
Int J Comput Assist Radiol Surg. 2011 Sep;6(5):641-52. doi: 10.1007/s11548-010-0541-5. Epub 2011 Jan 4.
10
Automatic Probe Movement Guidance for Freehand Obstetric Ultrasound.
Med Image Comput Comput Assist Interv. 2020 Oct;12263:583-592. doi: 10.1007/978-3-030-59716-0_56. Epub 2020 Sep 29.

引用本文的文献

2
Task model-specific operator skill assessment in routine fetal ultrasound scanning.
Int J Comput Assist Radiol Surg. 2022 Aug;17(8):1437-1444. doi: 10.1007/s11548-022-02642-y. Epub 2022 May 12.
4
Multi-Modal Learning from Video, Eye Tracking, and Pupillometry for Operator Skill Characterization in Clinical Fetal Ultrasound.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:1646-1649. doi: 10.1109/ISBI48211.2021.9433863. Epub 2021 May 25.
5
Towards Clinical Application of Artificial Intelligence in Ultrasound Imaging.
Biomedicines. 2021 Jun 23;9(7):720. doi: 10.3390/biomedicines9070720.
6
Machine learning-based analysis of operator pupillary response to assess cognitive workload in clinical ultrasound imaging.
Comput Biol Med. 2021 Aug;135:104589. doi: 10.1016/j.compbiomed.2021.104589. Epub 2021 Jun 20.

本文引用的文献

2
Educational impact of hand motion analysis in the evaluation of FAST examination skills.
Eur J Trauma Emerg Surg. 2020 Dec;46(6):1421-1428. doi: 10.1007/s00068-019-01112-6. Epub 2019 Mar 15.
3
Automated surgical skill assessment in RMIS training.
Int J Comput Assist Radiol Surg. 2018 May;13(5):731-739. doi: 10.1007/s11548-018-1735-5. Epub 2018 Mar 16.
4
Objective Assessment of Surgical Technical Skill and Competency in the Operating Room.
Annu Rev Biomed Eng. 2017 Jun 21;19:301-325. doi: 10.1146/annurev-bioeng-071516-044435. Epub 2017 Mar 27.
5
Automated video-based assessment of surgical skills for training and evaluation in medical schools.
Int J Comput Assist Radiol Surg. 2016 Sep;11(9):1623-36. doi: 10.1007/s11548-016-1468-2. Epub 2016 Aug 27.
6
Imaging techniques: Super-resolution ultrasound.
Nature. 2015 Nov 26;527(7579):451-2. doi: 10.1038/527451a.
8
Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks.
IEEE J Biomed Health Inform. 2015 Sep;19(5):1627-36. doi: 10.1109/JBHI.2015.2425041. Epub 2015 Apr 21.
9
Constructing a validity argument for the Objective Structured Assessment of Technical Skills (OSATS): a systematic review of validity evidence.
Adv Health Sci Educ Theory Pract. 2015 Dec;20(5):1149-75. doi: 10.1007/s10459-015-9593-1. Epub 2015 Feb 22.
10
String motif-based description of tool motion for detecting skill and gestures in robotic surgery.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):26-33. doi: 10.1007/978-3-642-40811-3_4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验