School of Computer Science, Carleton University, 1125 Colonel By Dr, Ottawa, K1S 5B6, ON, Canada.
Department of Emergency Medicine and Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada.
Int J Comput Assist Radiol Surg. 2024 Jan;19(1):43-49. doi: 10.1007/s11548-023-02908-z. Epub 2023 Apr 24.
FAST is a point of care ultrasound study that evaluates for the presence of free fluid, typically hemoperitoneum in trauma patients. FAST is an essential skill for Emergency Physicians. Thus, it requires objective evaluation tools that can reduce the necessity of direct observation for proficiency assessment. In this work, we use deep neural networks to automatically assess operators' FAST skills.
We propose a deep convolutional neural network for FAST proficiency assessment based on motion data. Prior work has shown that operators demonstrate different domain-specific dexterity metrics that can distinguish novices, intermediates, and experts. Therefore, we augment our dataset with this domain knowledge and employ fine-tuning to improve the model's classification capabilities. Our model, however, does not require specific points of interest (POIs) to be defined for scanning.
The results show that the proposed deep convolutional neural network can classify FAST proficiency with 87.5% accuracy and 0.884, 0.886, 0.247 sensitivity for novices, intermediates, and experts, respectively. It demonstrates the potential of using kinematics data as an input in FAST skill assessment tasks. We also show that the proposed domain-specific features and region fine-tuning increase the model's classification accuracy and sensitivity.
Variations in probe motion at different learning stages can be derived from kinematics data. These variations can be used for automatic and objective skill assessment without prior identification of clinical POIs. The proposed approach can improve the quality and objectivity of FAST proficiency evaluation. Furthermore, skill assessment combining ultrasound images and kinematics data can provide a more rigorous and diversified evaluation than using ultrasound images alone.
FAST 是一项即时床旁超声检查,用于评估创伤患者是否存在游离液体,通常是腹腔积血。FAST 是急诊医师的一项重要技能。因此,需要使用客观的评估工具来减少对熟练程度评估的直接观察需求。在这项工作中,我们使用深度神经网络自动评估操作人员的 FAST 技能。
我们提出了一种基于运动数据的 FAST 熟练程度评估的深度卷积神经网络。先前的工作表明,操作人员表现出不同的特定领域灵巧度指标,可以区分新手、中级和专家。因此,我们将此领域知识与我们的数据集进行了扩充,并采用了微调来提高模型的分类能力。然而,我们的模型不需要定义特定的扫描兴趣点(POI)。
结果表明,所提出的深度卷积神经网络可以以 87.5%的准确率对 FAST 技能进行分类,对于新手、中级和专家,分别具有 0.884、0.886 和 0.247 的敏感性。这表明了在 FAST 技能评估任务中使用运动学数据作为输入的潜力。我们还表明,所提出的特定领域特征和区域微调可以提高模型的分类准确性和敏感性。
在不同学习阶段,探头运动的变化可以从运动学数据中得出。这些变化可用于自动和客观的技能评估,而无需事先识别临床 POI。所提出的方法可以提高 FAST 熟练程度评估的质量和客观性。此外,结合超声图像和运动学数据的技能评估可以提供比仅使用超声图像更严格和多样化的评估。