Jolly Claire, Sanchez-Fuentes David, Garcia-Bermejo Ricardo, Cakiroglu Dilek, Carretero-Genevrier Adrian
Institut d'Electronique et des Systemes (IES), CNRS, Université de Montpellier.
Institut d'Electronique et des Systemes (IES), CNRS, Université de Montpellier;
J Vis Exp. 2020 Oct 6(164). doi: 10.3791/61766.
In this work, we show a detailed engineering route of the first piezoelectric nanostructured epitaxial quartz-based microcantilever. We will explain all the steps in the process starting from the material to the device fabrication. The epitaxial growth of α-quartz film on SOI (100) substrate starts with the preparation of a strontium doped silica sol-gel and continues with the deposition of this gel into the SOI substrate in a thin film form using the dip-coating technique under atmospheric conditions at room temperature. Before crystallization of the gel film, nanostructuration is performed onto the film surface by nanoimprint lithography (NIL). Epitaxial film growth is reached at 1000 °C, inducing a perfect crystallization of the patterned gel film. Fabrication of quartz crystal cantilever devices is a four-step process based on microfabrication techniques. The process starts with shaping the quartz surface, and then metal deposition for electrodes follows it. After removing the silicone, the cantilever is released from SOI substrate eliminating SiO2 between silicon and quartz. The device performance is analyzed by non-contact laser vibrometer (LDV) and atomic force microscopy (AFM). Among the different cantilever's dimensions included in the fabricated chip, the nanostructured cantilever analyzed in this work exhibited a dimension of 40 µm large and 100 µm long and was fabricated with a 600 nm thick patterned quartz layer (nanopillar diameter and separation distance of 400 nm and 1 µm, respectively) epitaxially grown on a 2 µm thick Si device layer. The measured resonance frequency was 267 kHz and the estimated quality factor, Q, of the whole mechanical structure was Q ~ 398 under low vacuum conditions. We observed the voltage-dependent linear displacement of cantilever with both techniques (i.e., AFM contact measurement and LDV). Therefore, proving that these devices can be activated through the indirect piezoelectric effect.
在这项工作中,我们展示了首个基于压电纳米结构外延石英的微悬臂梁的详细工程路线。我们将解释从材料到器件制造过程中的所有步骤。在SOI(100)衬底上外延生长α-石英薄膜,首先要制备掺锶的二氧化硅溶胶-凝胶,然后在室温大气条件下,使用浸涂技术将该凝胶以薄膜形式沉积到SOI衬底中。在凝胶膜结晶之前,通过纳米压印光刻(NIL)在膜表面进行纳米结构化。在1000℃实现外延膜生长,使图案化的凝胶膜完美结晶。石英晶体悬臂梁器件的制造是基于微加工技术的四步过程。该过程首先对石英表面进行成型,然后进行电极的金属沉积。去除硅酮后,悬臂梁从SOI衬底上释放,消除硅和石英之间的SiO₂。通过非接触激光测振仪(LDV)和原子力显微镜(AFM)分析器件性能。在所制造芯片中包含的不同悬臂梁尺寸中,本工作中分析的纳米结构化悬臂梁尺寸为40μm宽、100μm长,由外延生长在2μm厚Si器件层上的600nm厚图案化石英层(纳米柱直径和间距分别为400nm和1μm)制成。在低真空条件下,测得的共振频率为267kHz,整个机械结构的估计品质因数Q约为398。我们用这两种技术(即AFM接触测量和LDV)观察到了悬臂梁的电压依赖性线性位移。因此,证明这些器件可以通过间接压电效应激活。