Zhang Qianzhe, Sánchez-Fuentes David, Desgarceaux Rudy, Escofet-Majoral Pau, Oró-Soler Judith, Gázquez Jaume, Larrieu Guilhem, Charlot Benoit, Gómez Andrés, Gich Martí, Carretero-Genevrier Adrián
Institut d'Electronique et des Systemes (IES), CNRS , Université de Montpellier , 860 Rue de Saint Priest 34095 Montpellier , France.
Institut de Ciència de Materials de Barcelona ICMAB, Consejo Superior de Investigaciones Científicas CSIC, Campus UAB , 08193 Bellaterra , Catalonia , Spain.
ACS Appl Mater Interfaces. 2020 Jan 29;12(4):4732-4740. doi: 10.1021/acsami.9b18555. Epub 2020 Jan 13.
The monolithic integration of sub-micron quartz structures on silicon substrates is a key issue for the future development of piezoelectric devices as prospective sensors with applications based on the operation in the high-frequency range. However, to date, it has not been possible to make existing quartz manufacturing methods compatible with integration on silicon and structuration by top-down lithographic techniques. Here, we report an unprecedented large-scale fabrication of ordered arrays of piezoelectric epitaxial quartz nanostructures on silicon substrates by the combination of soft-chemistry and three lithographic techniques: (i) laser interference lithography, (ii) soft nanoimprint lithography on Sr-doped SiO sol-gel thin films, and (iii) self-assembled SrCO nanoparticle reactive nanomasks. Epitaxial α-quartz nanopillars with different diameters (from 1 μm down to 50 nm) and heights (up to 2 μm) were obtained. This work demonstrates the complementarity of soft-chemistry and top-down lithographic techniques for the patterning of epitaxial quartz thin films on silicon while preserving its epitaxial crystallinity and piezoelectric properties. These results open up the opportunity to develop a cost-effective on-chip integration of nanostructured piezoelectric α-quartz MEMS with enhanced sensing properties of relevance in different fields of application.
在硅衬底上实现亚微米级石英结构的单片集成,对于压电器件未来作为基于高频运行的前瞻性传感器的发展而言是一个关键问题。然而,迄今为止,现有的石英制造方法尚无法与通过自上而下光刻技术在硅上进行集成和结构化兼容。在此,我们报告了通过软化学方法与三种光刻技术相结合,在硅衬底上实现了前所未有的大规模有序阵列压电外延石英纳米结构的制造:(i)激光干涉光刻,(ii)在掺锶二氧化硅溶胶 - 凝胶薄膜上进行软纳米压印光刻,以及(iii)自组装碳酸锶纳米颗粒反应性纳米掩膜。获得了具有不同直径(从1μm至50nm)和高度(高达2μm)的外延α - 石英纳米柱。这项工作展示了软化学方法与自上而下光刻技术在硅上对外延石英薄膜进行图案化时的互补性,同时保留了其外延结晶度和压电性能。这些结果为开发具有成本效益的片上集成纳米结构压电α - 石英微机电系统(MEMS)创造了机会,该系统在不同应用领域具有增强的传感特性。