Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, People's Republic of China.
Department of life Science and Engineering, Jining University, Qufu, Shandong 273155, People's Republic of China.
Tree Physiol. 2021 May 14;41(5):756-770. doi: 10.1093/treephys/tpaa142.
Maintaining mitochondrial respiration is crucial for proving ATP for H+ pumps to continuously exclude Na+ under salt stress. NaCl-altered O2 uptake, mitochondrial respiration and the relevance to H+-ATPase activity were investigated in two contrasting poplar species, Populus euphratica (salt-tolerant) and Populus popularis 35-44 (salt-sensitive). Compared with P. popularis, P. euphratica roots exhibited a greater capacity to extrude Na+ under NaCl stress (150 mM). The cytochemical analysis with Pb(NO3)2 staining revealed that P. euphratica root cells retained higher H+ hydrolysis activity than the salt-sensitive poplar during a long term (LT) of increasing salt stress (50-200 mM NaCl, 4 weeks). Long-sustained activation of proton pumps requires long-lasting supply of energy (adenosine triphosphate, ATP), which is delivered by aerobic respiration. Taking advantage of the vibrating-electrodes technology combined with the use of membrane-tipped, polarographic oxygen microelectrodes, the species, spatial and temporal differences in root O2 uptake were characterized under conditions of salt stress. Oxygen uptake upon NaCl shock (150 mM) was less declined in P. euphratica than in P. popularis, although the salt-induced transient kinetics were distinct from the drastic drop of O2 caused by hyperosmotic shock (255 mM mannitol). Short-term (ST) treatment (150 mM NaCl, 24 h) stimulated O2 influx in P. euphratica roots, and LT-treated P. euphratica displayed an increased O2 influx along the root axis, whereas O2 influx declined with increasing salinity in P. popularis roots. The spatial localization of O2 influxes revealed that the apical zone was more susceptible than the elongation region upon high NaCl (150, 200 mM) during ST and LT stress. Pharmacological experiments showed that the Na+ extrusion and H+-ATPase activity in salinized roots were correspondingly suppressed when O2 uptake was inhibited by a mitochondrial respiration inhibitor, NaN3. Therefore, we conclude that the stable mitochondrial respiration energized H+-ATPase of P. euphratica root cells for maintaining Na+ homeostasis under salt environments.
维持线粒体呼吸对于在盐胁迫下为 H+泵提供持续排除 Na+所需的 ATP 至关重要。在两种不同的杨树物种(耐盐的胡杨和盐敏感的 35-44 杨)中,研究了 NaCl 改变的 O2 摄取、线粒体呼吸以及与 H+-ATPase 活性的关系。与 P. popularis 相比,P. euphratica 根在 NaCl 胁迫下表现出更大的排出 Na+的能力(150 mM)。用 Pb(NO3)2 染色的细胞化学分析表明,在长期(50-200 mM NaCl,4 周)增加盐胁迫下,P. euphratica 根细胞保持更高的 H+水解活性。质子泵的长期持续激活需要有氧呼吸提供持久的能量(三磷酸腺苷,ATP)。利用振动电极技术和膜尖端、极谱氧微电极的使用,在盐胁迫条件下,描述了物种、空间和时间上根 O2 摄取的差异。在 P. euphratica 中,O2 摄取在 NaCl 冲击(150 mM)时的下降幅度小于 P. popularis,尽管盐诱导的瞬时动力学与由高渗冲击(255 mM 甘露醇)引起的 O2 急剧下降不同。短期(150 mM NaCl,24 h)处理刺激 P. euphratica 根的 O2 流入,长期处理的 P. euphratica 显示出沿根轴增加的 O2 流入,而 P. popularis 根的 O2 流入随着盐度的增加而下降。O2 流入的空间定位表明,在短期和长期胁迫下,高 NaCl(150、200 mM)时,根尖区比伸长区更容易受到影响。药理学实验表明,在用线粒体呼吸抑制剂NaN3 抑制 O2 摄取时,盐化根中的 Na+排出和 H+-ATPase 活性相应受到抑制。因此,我们得出结论,稳定的线粒体呼吸为 P. euphratica 根细胞在盐环境下维持 Na+稳态提供了 H+-ATPase 的能量。