Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037.
Department of Ophthalmology, Juntendo University School of Medicine, 113-8421 Tokyo, Japan.
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28297-28306. doi: 10.1073/pnas.2017234117. Epub 2020 Oct 26.
Retinal neovascularization (NV), a leading cause of vision loss, results from localized hypoxia that stabilizes the hypoxia-inducible transcription factors HIF-1α and HIF-2α, enabling the expression of angiogenic factors and genes required to maintain homeostasis under conditions of oxygen stress. HIF transcriptional activity depends on the interaction between its intrinsically disordered C-terminal domain and the transcriptional coactivators CBP/p300. Much effort is currently directed at disrupting protein-protein interactions between disease-associated transcription factors like HIF and their cellular partners. The intrinsically disordered protein CITED2, a direct product of HIF-mediated transcription, functions as a hypersensitive negative regulator that attenuates the hypoxic response by competing allosterically with HIF-1α for binding to CBP/p300. Here, we show that a peptide fragment of CITED2 is taken up by retinal cells and efficiently regulates pathological angiogenesis in murine models of ischemic retinopathy. Both vaso-obliteration (VO) and NV were significantly inhibited in an oxygen-induced retinopathy (OIR) model following intravitreal injection of the CITED2 peptide. The CITED2 peptide localized to retinal neurons and glia, resulting in decreased expression of HIF target genes. Aflibercept, a commonly used anti-VEGF therapy for retinal neovascular diseases, rescued NV but not VO in OIR. However, a combination of the CITED2 peptide and a reduced dose of aflibercept significantly decreased both NV and VO. In contrast to anti-VEGF agents, the CITED2 peptide can rescue hypoxia-induced retinal NV by modulating the hypoxic response through direct competition with HIF for CBP/p300, suggesting a dual targeting strategy for treatment of ischemic retinal diseases and other neovascular disorders.
视网膜新生血管(NV)是视力丧失的主要原因,它源于局部缺氧,稳定缺氧诱导转录因子 HIF-1α 和 HIF-2α,使血管生成因子和维持氧应激下的稳态所需的基因得以表达。HIF 的转录活性取决于其无规卷曲的 C 端结构域与转录共激活因子 CBP/p300 之间的相互作用。目前,人们正在努力破坏像 HIF 这样与疾病相关的转录因子与其细胞伴侣之间的蛋白-蛋白相互作用。HIF 介导的转录的直接产物固有无序蛋白 CITED2 作为一个超敏负调节因子,通过与 CBP/p300 进行变构竞争来与 HIF-1α 结合,从而减弱低氧反应。在这里,我们表明 CITED2 的肽片段被视网膜细胞摄取,并在缺血性视网膜病变的小鼠模型中有效调节病理性血管生成。在氧诱导的视网膜病变(OIR)模型中,玻璃体内注射 CITED2 肽后,血管闭塞(VO)和 NV 均显著抑制。CITED2 肽定位于视网膜神经元和神经胶质细胞,导致 HIF 靶基因表达减少。阿柏西普,一种常用于治疗视网膜新生血管疾病的抗 VEGF 疗法,可挽救 OIR 中的 NV,但不能挽救 VO。然而,CITED2 肽与阿柏西普的低剂量联合使用可显著减少 NV 和 VO。与抗 VEGF 药物不同,CITED2 肽可通过与 HIF 直接竞争 CBP/p300 来调节低氧反应,从而挽救缺氧诱导的视网膜 NV,提示缺血性视网膜疾病和其他新生血管疾病的双重靶向治疗策略。