Suppr超能文献

基于深度学习的完全自动化氧诱导视网膜病变图像分割。

Fully automated, deep learning segmentation of oxygen-induced retinopathy images.

机构信息

Department of Ophthalmology, University of Washington, Seattle, Washington, USA.

Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.

出版信息

JCI Insight. 2017 Dec 21;2(24):97585. doi: 10.1172/jci.insight.97585.

Abstract

Oxygen-induced retinopathy (OIR) is a widely used model to study ischemia-driven neovascularization (NV) in the retina and to serve in proof-of-concept studies in evaluating antiangiogenic drugs for ocular, as well as nonocular, diseases. The primary parameters that are analyzed in this mouse model include the percentage of retina with vaso-obliteration (VO) and NV areas. However, quantification of these two key variables comes with a great challenge due to the requirement of human experts to read the images. Human readers are costly, time-consuming, and subject to bias. Using recent advances in machine learning and computer vision, we trained deep learning neural networks using over a thousand segmentations to fully automate segmentation in OIR images. While determining the percentage area of VO, our algorithm achieved a similar range of correlation coefficients to that of expert inter-human correlation coefficients. In addition, our algorithm achieved a higher range of correlation coefficients compared with inter-expert correlation coefficients for quantification of the percentage area of neovascular tufts. In summary, we have created an open-source, fully automated pipeline for the quantification of key values of OIR images using deep learning neural networks.

摘要

氧诱导视网膜病变(OIR)是一种广泛用于研究视网膜缺血驱动的新生血管化(NV)的模型,也可用于评估眼部和非眼部疾病的抗血管生成药物的概念验证研究。该小鼠模型中分析的主要参数包括视网膜血管闭塞(VO)和 NV 区域的百分比。然而,由于需要人类专家来阅读图像,因此对这两个关键变量进行定量分析具有很大的挑战性。人类读者成本高、耗时且容易产生偏差。利用机器学习和计算机视觉的最新进展,我们使用一千多个分割对深度学习神经网络进行了训练,以实现 OIR 图像的完全自动化分割。在确定 VO 面积百分比时,我们的算法与专家之间的人类相关性系数的相关性范围相似。此外,与专家之间的相关性系数相比,我们的算法在量化新生血管丛的百分比面积方面具有更高的相关性范围。总之,我们使用深度学习神经网络创建了一个开源的、完全自动化的 OIR 图像关键值定量分析流水线。

相似文献

引用本文的文献

10
Hyperoxia Induced Hypomyelination.高氧诱导的髓鞘形成减少
Biomedicines. 2022 Dec 23;11(1):37. doi: 10.3390/biomedicines11010037.

本文引用的文献

3
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.SegNet:一种用于图像分割的深度卷积编解码器架构。
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.
6
Antiangiogenic therapy in oncology: current status and future directions.肿瘤学中的抗血管生成治疗:现状与未来方向。
Lancet. 2016 Jul 30;388(10043):518-29. doi: 10.1016/S0140-6736(15)01088-0. Epub 2016 Feb 5.
10
The mouse retina as an angiogenesis model.鼠视网膜作为血管生成模型。
Invest Ophthalmol Vis Sci. 2010 Jun;51(6):2813-26. doi: 10.1167/iovs.10-5176.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验