Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, California, USA.
Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Harvard University, Boston, Massachusetts, USA.
Curr Eye Res. 2021 May;46(5):710-718. doi: 10.1080/02713683.2020.1826976. Epub 2020 Oct 27.
Understanding molecular changes is essential for designing effective treatments for nonarteritic anterior ischemic optic neuropathy (AION), the most common acute optic neuropathy in adults older than 50 years. We investigated changes in the mitogen-activated protein kinase (MAPK) pathway after experimental AION and focused on dual specificity phosphatase 14 (Dusp14), an atypical MAPK phosphatase that is downstream of Krüppel-like transcription factor (KLF) 9-mediated inhibition of retinal ganglion cell (RGC) survival and axonal regeneration.
We induced severe AION in a photochemical thrombosis model in adult C57BL/6 wild-type and Dusp14 knockout mice. For comparison, some studies were performed using an optic nerve crush model. We assessed changes in MAPK pathway molecules using Western blot and immunohistochemistry, measured retinal thickness using optical coherence tomography (OCT), and quantified RGCs and axons using histologic methods.
Three days after severe AION, there was no change in the retinal protein levels of MAPK ERK1/2, phosphorylated-ERK1/2 (pERK1/2), downstream effector Elk-1 and phosphatase Dusp14 on Western blot. Western blot analysis of purified RGCs after a more severe model using optic nerve crush also showed no change in Dusp14 protein expression. Because of the known importance of the Dusp14 and MAPK pathway in RGCs, we examined changes after AION in Dusp14 knockout mice. Three days after AION, Dusp14 knockout mice had significantly increased pERK1/2, Brn3A RGCs on immunohistochemistry. Three weeks after AION, Dusp14 knockout mice had significantly greater preservation of retinal thickness, increased number of Brn3A RGCs on whole mount preparation, and increased number of optic nerve axons compared with wild-type mice.
Genetic deletion of Dusp14, a MAPK phosphatase important in KFL9-mediated inhibition of RGC survival, led to increased activation of MAPK ERK1/2 and greater RGC and axonal survival after experimental AION. Inhibiting Dusp14 or activating the MAPK pathway should be examined further as a potential therapeutic approach to treatment of AION.
AION: anterior ischemic optic neuropathy; Dusp14: dual specific phosphatase 14; ERK1/2: extracellular signal-regulated kinases 1/2; Elk-1: ETS Like-1 protein; GCC: ganglion cell complex; GCL: ganglion cell layer; inner nuclear layer; KO: knockout; MAPK: mitogen-activated phosphokinase; OCT: optical coherence tomography; RGC: retinal ganglion cell; RNFL: retinal nerve fiber layer.
理解分子变化对于设计非动脉炎性前部缺血性视神经病变(NAION)的有效治疗方法至关重要,NAION 是 50 岁以上成年人中最常见的急性视神经病变。我们研究了实验性 NAION 后丝裂原活化蛋白激酶(MAPK)通路的变化,并重点研究了双特异性磷酸酶 14(Dusp14),Dusp14 是 Krüppel 样转录因子(KLF)9 介导的视网膜神经节细胞(RGC)存活和轴突再生抑制的下游非典型 MAPK 磷酸酶。
我们在成年 C57BL/6 野生型和 Dusp14 敲除小鼠的光化学血栓形成模型中诱导严重的 NAION。为了进行比较,一些研究使用视神经挤压模型进行。我们使用 Western blot 和免疫组织化学检测 MAPK 通路分子的变化,使用光学相干断层扫描(OCT)测量视网膜厚度,并使用组织学方法量化 RGC 和轴突。
严重 NAION 后 3 天,Western blot 显示 MAPK ERK1/2、磷酸化 ERK1/2(pERK1/2)、下游效应物 Elk-1 和磷酸酶 Dusp14 的视网膜蛋白水平没有变化。使用视神经挤压更严重模型的纯化 RGC 的 Western blot 分析也显示 Dusp14 蛋白表达没有变化。由于 Dusp14 和 MAPK 通路在 RGC 中的重要性已知,我们在 NAION 后检查了 Dusp14 敲除小鼠的变化。NAION 后 3 天,Dusp14 敲除小鼠的 pERK1/2、Brn3A RGC 的免疫组织化学显著增加。NAION 后 3 周,与野生型小鼠相比,Dusp14 敲除小鼠的视网膜厚度保持显著增加,全层制备的 Brn3A RGC 数量增加,视神经轴突数量增加。
MAPK 磷酸酶 Dusp14 在 KFL9 介导的 RGC 存活抑制中很重要,其基因缺失导致实验性 NAION 后 MAPK ERK1/2 的激活增加和更多的 RGC 和轴突存活。抑制 Dusp14 或激活 MAPK 通路可能作为治疗 NAION 的潜在治疗方法进一步研究。