Suppr超能文献

应用机器学习重新评估液压冲击伤后多变量功能恢复的模式:颅脑创伤治疗手术。

Use of Machine Learning to Re-Assess Patterns of Multivariate Functional Recovery after Fluid Percussion Injury: Operation Brain Trauma Therapy.

机构信息

Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.

Department of Computer Science, University of Miami College of Arts and Sciences, Miami, Florida, USA.

出版信息

J Neurotrauma. 2021 Jun 15;38(12):1670-1678. doi: 10.1089/neu.2020.7357. Epub 2021 Jan 13.

Abstract

Traumatic brain injury (TBI) is a leading cause of death and disability. Yet, despite immense research efforts, treatment options remain elusive. Translational failures in TBI are often attributed to the heterogeneity of the TBI population and limited methods to capture these individual variabilities. Advances in machine learning (ML) have the potential to further personalized treatment strategies and better inform translational research. However, the use of ML has yet to be widely assessed in pre-clinical neurotrauma research, where data are strictly limited in subject number. To better establish ML's feasibility, we utilized the fluid percussion injury (FPI) portion of the rich, rat data set collected by Operation Brain Trauma Therapy (OBTT), which tested multiple pharmacological treatments. Previous work has provided confidence that both unsupervised and supervised ML techniques can uncover useful insights from this OBTT pre-clinical research data set. As a proof-of-concept, we aimed to better evaluate the multi-variate recovery profiles afforded by the administration of nine different experimental therapies. We assessed supervised pairwise classifiers trained on a pre-processed data set that incorporated metrics from four feature groups to determine their ability to correctly identify specific drug treatments. In all but one of the possible pairwise combinations of minocycline, levetiracetam, erythropoietin, nicotinamide, and amantadine, the baseline was outperformed by one or more supervised classifiers, the exception being nicotinamide versus amantadine. Further, when the same methods were employed to assess different doses of the same treatment, the ML classifiers had greater difficulty in understanding which treatment each sample received. Our data serve as a critical first step toward identifying optimal treatments for specific subgroups of samples that are dependent on factors such as types and severity of traumatic injuries, as well as informing the prediction of therapeutic combinations that may lead to greater treatment effects than individual therapies.

摘要

创伤性脑损伤(TBI)是死亡和残疾的主要原因。然而,尽管进行了大量研究,但治疗选择仍然难以捉摸。TBI 中的转化失败通常归因于 TBI 人群的异质性和捕获这些个体变异性的方法有限。机器学习(ML)的进步有可能进一步实现个性化治疗策略,并更好地为转化研究提供信息。然而,ML 的使用尚未在临床前神经创伤研究中得到广泛评估,在这种研究中,数据在受试者数量上受到严格限制。为了更好地确定 ML 的可行性,我们利用了 Operation Brain Trauma Therapy(OBTT)收集的丰富的大鼠数据集中的流体冲击损伤(FPI)部分,该部分测试了多种药物治疗方法。以前的工作已经证明,无监督和监督 ML 技术都可以从这个 OBTT 临床前研究数据集中发现有用的见解。作为一个概念验证,我们旨在更好地评估通过管理九种不同实验性治疗方法提供的多变量恢复情况。我们评估了在预处理数据集中训练的监督成对分类器,该数据集纳入了来自四个特征组的指标,以确定它们正确识别特定药物治疗的能力。在所有可能的九种组合中,除了米诺环素、左乙拉西坦、促红细胞生成素、烟酰胺和金刚烷胺之外,一个或多个监督分类器的表现都优于基线,唯一的例外是烟酰胺与金刚烷胺。此外,当相同的方法被用于评估同一治疗的不同剂量时,ML 分类器更难以理解每个样本接受了哪种治疗。我们的数据为确定依赖于创伤类型和严重程度等因素的特定样本亚组的最佳治疗方法提供了关键的第一步,并为预测可能导致比单一治疗效果更好的治疗组合提供了信息。

相似文献

3
Operation Brain Trauma Therapy: 2016 Update.脑外伤治疗行动:2016年更新版
Mil Med. 2018 Mar 1;183(suppl_1):303-312. doi: 10.1093/milmed/usx184.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验