Suppr超能文献

新冠疫情在线交流中的交际指责:运用自动分析技术衡量污名化线索和负面情绪的计算方法

Communicative Blame in Online Communication of the COVID-19 Pandemic: Computational Approach of Stigmatizing Cues and Negative Sentiment Gauged With Automated Analytic Techniques.

作者信息

Chang Angela, Schulz Peter Johannes, Tu ShengTsung, Liu Matthew Tingchi

机构信息

Department of Communication, Faculty of Social Sciences, University of Macau, Macao, China.

Institute of Communication and Health, Lugano University, Lugano, Switzerland.

出版信息

J Med Internet Res. 2020 Nov 25;22(11):e21504. doi: 10.2196/21504.

Abstract

BACKGROUND

Information about a new coronavirus emerged in 2019 and rapidly spread around the world, gaining significant public attention and attracting negative bias. The use of stigmatizing language for the purpose of blaming sparked a debate.

OBJECTIVE

This study aims to identify social stigma and negative sentiment toward the blameworthy agents in social communities.

METHODS

We enabled a tailored text-mining platform to identify data in their natural settings by retrieving and filtering online sources, and constructed vocabularies and learning word representations from natural language processing for deductive analysis along with the research theme. The data sources comprised of ten news websites, eleven discussion forums, one social network, and two principal media sharing networks in Taiwan. A synthesis of news and social networking analytics was present from December 30, 2019, to March 31, 2020.

RESULTS

We collated over 1.07 million Chinese texts. Almost two-thirds of the texts on COVID-19 came from news services (n=683,887, 63.68%), followed by Facebook (n=297,823, 27.73%), discussion forums (n=62,119, 5.78%), and Instagram and YouTube (n=30,154, 2.81%). Our data showed that online news served as a hotbed for negativity and for driving emotional social posts. Online information regarding COVID-19 associated it with China-and a specific city within China through references to the "Wuhan pneumonia"-potentially encouraging xenophobia. The adoption of this problematic moniker had a high frequency, despite the World Health Organization guideline to avoid biased perceptions and ethnic discrimination. Social stigma is disclosed through negatively valenced responses, which are associated with the most blamed targets.

CONCLUSIONS

Our sample is sufficiently representative of a community because it contains a broad range of mainstream online media. Stigmatizing language linked to the COVID-19 pandemic shows a lack of civic responsibility that encourages bias, hostility, and discrimination. Frequently used stigmatizing terms were deemed offensive, and they might have contributed to recent backlashes against China by directing blame and encouraging xenophobia. The implications ranging from health risk communication to stigma mitigation and xenophobia concerns amid the COVID-19 outbreak are emphasized. Understanding the nomenclature and biased terms employed in relation to the COVID-19 outbreak is paramount. We propose solidarity with communication professionals in combating the COVID-19 outbreak and the infodemic. Finding solutions to curb the spread of virus bias, stigma, and discrimination is imperative.

摘要

背景

2019年出现了一种新型冠状病毒的相关信息,并迅速在全球传播,引起了公众的广泛关注和负面偏见。使用污名化语言进行指责引发了一场辩论。

目的

本研究旨在识别社会社区中对应受指责者的社会污名和负面情绪。

方法

我们启用了一个定制的文本挖掘平台,通过检索和筛选在线来源在自然环境中识别数据,并构建词汇表和从自然语言处理中学习词表示,以便与研究主题一起进行演绎分析。数据来源包括台湾的十个新闻网站、十一个讨论论坛、一个社交网络和两个主要媒体共享网络。呈现了2019年12月30日至2020年3月31日期间新闻和社交网络分析的综合情况。

结果

我们整理了超过107万篇中文文本。关于新冠病毒的文本中,近三分之二来自新闻服务(n = 683,887,63.68%),其次是脸书(n = 297,823,27.73%)、讨论论坛(n = 62,119,5.78%)以及照片墙和优兔(n = 30,154,2.81%)。我们的数据表明,在线新闻是负面情绪的温床,也是推动情绪化社交帖子的源头。关于新冠病毒的在线信息通过提及“武汉肺炎”将其与中国以及中国的一个特定城市联系起来,这可能助长了仇外心理。尽管世界卫生组织有避免偏见认知和种族歧视的指导方针,但这种有问题的称呼使用频率很高。社会污名通过消极情绪的回应得以体现,这些回应与最受指责的对象相关。

结论

我们的样本具有足够的社区代表性,因为它包含了广泛的主流在线媒体。与新冠疫情相关的污名化语言显示出缺乏公民责任感,助长了偏见、敌意和歧视。频繁使用的污名化词汇被认为具有冒犯性,它们可能通过指责和助长仇外心理导致了近期对中国的抵制。强调了在新冠疫情爆发期间从健康风险沟通到减少污名和关注仇外心理等方面的影响。了解与新冠疫情爆发相关的命名法和有偏见的术语至关重要。我们建议与传播专业人员团结起来抗击新冠疫情和信息疫情。找到遏制病毒偏见、污名和歧视传播的解决方案势在必行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e593/7690967/4e7991f431c5/jmir_v22i11e21504_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验