Vasilopoulos Vasileios, Pitou Maria, Fekas Ilias, Papi Rigini, Ouranidis Andreas, Pavlidou Eleni, Patsalas Panos, Choli-Papadopoulou Τheodora
Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
ACS Omega. 2020 Oct 5;5(41):26329-26334. doi: 10.1021/acsomega.0c00834. eCollection 2020 Oct 20.
The great demand for antibacterial, biocompatible, and easily manufactured nanostructures has led to the design and development of graphene-wrapped copper nanoparticles (CuNPs) supported on Si wafers. In this study, we investigated the antibacterial properties of graphene/CuNPs nanostructures against Gram-positive and Gram-negative bacteria. Additional experiments regarding graphene/CuNPs nanostructures behavior against mouse fibroblast cell line L929 indicated their biocompatibility and consequently render them as model biomaterials for medical uses. Biofunctionalization of graphene/CuNPs nanostructures with a high-molecular-weight protein (green fluorescent protein), which retains its functionality after a "tight binding" on the nanostructure's surface, opens the way for attaching and other proteins, or biomolecules of great biological interest, to prepare novel biomaterials.
对具有抗菌性、生物相容性且易于制造的纳米结构的巨大需求,促使了负载在硅片上的石墨烯包裹铜纳米颗粒(CuNPs)的设计与开发。在本研究中,我们研究了石墨烯/CuNPs纳米结构对革兰氏阳性菌和革兰氏阴性菌的抗菌性能。关于石墨烯/CuNPs纳米结构对小鼠成纤维细胞系L929的行为的额外实验表明了它们的生物相容性,因此使其成为用于医学用途的模型生物材料。用高分子量蛋白质(绿色荧光蛋白)对石墨烯/CuNPs纳米结构进行生物功能化,该蛋白质在“紧密结合”到纳米结构表面后仍保留其功能,为附着其他蛋白质或具有重大生物学意义的生物分子以制备新型生物材料开辟了道路。