Suppr超能文献

基于回归模型的细胞培养操作新型媒体配方的开发。

Development of new media formulations for cell culture operations based on regression models.

机构信息

Chemical Engineering Department, University of Waterloo, Waterloo, Canada.

MilliporeSigma, A Business of Merck KGaA, Darmstadt, Germany, Saint Louis, USA.

出版信息

Bioprocess Biosyst Eng. 2021 Mar;44(3):453-472. doi: 10.1007/s00449-020-02456-9. Epub 2020 Oct 28.

Abstract

The paper discusses modelling and optimization of multi-component cell culture medium. The specific productivity (Qp) was considered a function of the medium components and possible interactions described by linear factors, two-way interactions and squared terms that results in a high dimensional problem where the number of variables p (represented by the medium components and their interactions) is much larger than the number of observations n. Principal Components Regression (PCR), Partial Least Squares (PLS), Lasso and Elastic Net regressions were compared as modelling tools to deal with a high dimensional [Formula: see text] problem. PCR and PLS regression models resulted in better prediction results and were used for robust optimization of the medium composition by a nonlinear optimization. The case studies show that it is possible to formulate new media that result in higher Qp than the ones provided by the initial media experiments available. Also, the multivariate statistical approach permitted us to select media that is most informative about the optimum thus permitting modelling and optimization with a reduced set of initial experiments.

摘要

本文讨论了多组分细胞培养基的建模和优化。比生产率(Qp)被视为培养基成分的函数,可能的相互作用由线性因子、双向相互作用和平方项描述,这导致了一个高维问题,其中变量的数量 p(由培养基成分及其相互作用表示)远大于观测值的数量 n。主成分回归(PCR)、偏最小二乘(PLS)、套索和弹性网络回归被比较作为建模工具来处理高维[公式:见文本]问题。PCR 和 PLS 回归模型产生了更好的预测结果,并通过非线性优化用于对培养基组成进行稳健优化。案例研究表明,有可能配制出比初始培养基实验提供的 Qp 更高的新培养基。此外,多元统计方法允许我们选择对最优信息最丰富的培养基,从而可以使用较少的初始实验进行建模和优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验