Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States.
Chem Res Toxicol. 2020 Nov 16;33(11):2688-2698. doi: 10.1021/acs.chemrestox.0c00326. Epub 2020 Oct 28.
Genomic DNA is chemically reactive and therefore susceptible to damage by many exogenous and endogenous sources. Lesions produced from these damaging events can have various mutagenic and genotoxic consequences. This Perspective follows the journey of one particular lesion, 1,-ethenoadenine (εA), from its formation to replication and repair, and its role in cancerous tissues and inflammatory diseases. εA is generated by the reaction of adenine (A) with vinyl chloride or lipid peroxidation products. We present the miscoding properties of εA with an emphasis on how bacterial and mammalian cells can process lesions differently, leading to varied mutational spectra. But with information from these assays, we can better understand how the miscoding properties of εA lead to biological consequences and how genomic stability can be maintained via DNA repair mechanisms. We discuss how base excision repair (BER) and direct reversal repair (DRR) can minimize the biological consequences of εA lesions. Kinetic parameters of glycosylases and AlkB family enzymes are described, along with a discussion of the relative contributions of the BER and DRR pathways in the repair of εA. Because eukaryotic DNA is packaged in chromatin, we also discuss the impact of this packaging on BER and DRR, specifically in regards to repair of εA. Studying DNA lesions like εA in this context, from origin to biological implications, can provide crucial information to better understand prevention of mutagenesis and cancer.
基因组 DNA 具有化学活性,因此容易受到许多外源性和内源性来源的损伤。这些损伤事件产生的损伤可能具有各种诱变和遗传毒性后果。本观点探讨了一种特定损伤——1, -烯腺嘌呤(εA)——从形成到复制和修复的过程,以及它在癌组织和炎症性疾病中的作用。εA 是由腺嘌呤(A)与氯乙烯或脂质过氧化产物反应生成的。我们介绍了 εA 的错配特性,重点介绍了细菌和哺乳动物细胞如何以不同的方式处理损伤,从而导致不同的突变谱。但是,通过这些检测结果,我们可以更好地理解 εA 的错配特性如何导致生物学后果,以及基因组稳定性如何通过 DNA 修复机制得以维持。我们讨论了碱基切除修复(BER)和直接反转修复(DRR)如何最小化 εA 损伤的生物学后果。还描述了糖苷酶和 AlkB 家族酶的动力学参数,并讨论了 BER 和 DRR 途径在修复 εA 中的相对贡献。由于真核生物 DNA 被包装在染色质中,我们还讨论了这种包装对 BER 和 DRR 的影响,特别是在修复 εA 方面。从起源到生物学意义,研究像 εA 这样的 DNA 损伤可以提供关键信息,以更好地理解预防突变和癌症。