Suppr超能文献

比较碱基切除和直接反转修复途径纠正强定位核小体核心颗粒中 1,-乙烯腺嘌呤。

Comparison of the Base Excision and Direct Reversal Repair Pathways for Correcting 1,-Ethenoadenine in Strongly Positioned Nucleosome Core Particles.

机构信息

Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States.

Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States.

出版信息

Chem Res Toxicol. 2020 Jul 20;33(7):1888-1896. doi: 10.1021/acs.chemrestox.0c00089. Epub 2020 May 1.

Abstract

1,-ethenoadenine (εA) is a mutagenic lesion and biomarker observed in numerous cancerous tissues. Two pathways are responsible for its repair: base excision repair (BER) and direct reversal repair (DRR). Alkyladenine DNA glycosylase (AAG) is the primary enzyme that excises εA in BER, generating stable intermediates that are processed by downstream enzymes. For DRR, the Fe(II)/α-ketoglutarate-dependent ALKBH2 enzyme repairs εA by direct conversion of εA to A. While the molecular mechanism of each enzyme is well understood on unpackaged duplex DNA, less is known about their actions on packaged DNA. The nucleosome core particle (NCP) forms the minimal packaging unit of DNA in eukaryotic organisms and is composed of 145-147 base pairs wrapped around a core of eight histone proteins. In this work, we investigated the activity of AAG and ALKBH2 on εA lesions globally distributed at positions throughout a strongly positioned NCP. Overall, we examined the repair of εA at 23 unique locations in packaged DNA. We observed a strong correlation between rotational positioning of εA and AAG activity but not ALKBH2 activity. ALKBH2 was more effective than AAG at repairing occluded εA lesions, but only AAG was capable of full repair of any εA in the NCP. However, notable exceptions to these trends were observed, highlighting the complexity of the NCP as a substrate for DNA repair. Modeling of binding of the repair enzymes to NCPs revealed that some of these observations can be explained by steric interference caused by DNA packaging. Specifically, interactions between ALKBH2 and the histone proteins obstruct binding to DNA, which leads to diminished activity. Taken together, these results support observations of alkylation damage profiles and contribute to our understanding of mutational hotspots.

摘要

1, - 烯腺嘌呤(εA)是一种诱变损伤和生物标志物,存在于许多癌组织中。有两条途径负责修复它:碱基切除修复(BER)和直接逆转修复(DRR)。烷基腺嘌呤 DNA 糖基化酶(AAG)是在 BER 中切除 εA 的主要酶,生成稳定的中间体,由下游酶处理。对于 DRR,Fe(II)/α-酮戊二酸依赖性 ALKBH2 酶通过直接将 εA 转化为 A 来修复 εA。虽然每种酶在未包装的双链 DNA 上的分子机制都得到了很好的理解,但对其在包装 DNA 上的作用知之甚少。核小体核心颗粒(NCP)是真核生物中 DNA 的最小包装单元,由 145-147 个碱基对组成,围绕着核心的 8 个组蛋白蛋白。在这项工作中,我们研究了 AAG 和 ALKBH2 在 εA 损伤上的活性,这些损伤在一个强定位 NCP 中的各个位置上分布广泛。总的来说,我们在包装 DNA 中 23 个独特的位置上观察了 εA 的修复。我们观察到 εA 的旋转定位与 AAG 活性之间存在很强的相关性,但与 ALKBH2 活性无关。ALKBH2 比 AAG 更有效地修复被遮挡的 εA 损伤,但只有 AAG 能够完全修复 NCP 中的任何 εA。然而,观察到了这些趋势的显著例外,突出了 NCP 作为 DNA 修复底物的复杂性。修复酶与 NCP 结合的建模表明,这些观察结果中的一些可以通过 DNA 包装引起的空间干扰来解释。具体来说,ALKBH2 与组蛋白蛋白之间的相互作用阻碍了与 DNA 的结合,导致活性降低。总的来说,这些结果支持了烷基化损伤谱的观察,并有助于我们理解突变热点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c19/7374743/88c937136073/tx0c00089_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验