Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia.
Advanced Technology and Biology, The Walter & Eliza Hall Institute of Medical Research, Parkville, Australia.
Autophagy. 2021 Oct;17(10):2734-2749. doi: 10.1080/15548627.2020.1838105. Epub 2020 Oct 28.
Macroautophagy/autophagy is a highly conserved lysosomal degradative pathway important for maintaining cellular homeostasis. Much of our current knowledge of autophagy is focused on the initiation steps in this process. Recently, an understanding of later steps, particularly lysosomal fusion leading to autolysosome formation and the subsequent role of lysosomal enzymes in degradation and recycling, is becoming evident. Autophagy can function in both cell survival and cell death, however, the mechanisms that distinguish adaptive/survival autophagy from autophagy-dependent cell death remain to be established. Here, using proteomic analysis of larval midguts during degradation, we identify a group of proteins with peptidase activity, suggesting a role in autophagy-dependent cell death. We show that -deficient larval midgut cells accumulate aberrant autophagic vesicles due to a block in autophagic flux, yet later stages of midgut degradation are not compromised. The accumulation of large aberrant autolysosomes in the absence of appears to be the consequence of decreased degradative capacity as they contain undigested cytoplasmic material, rather than a defect in autophagosome-lysosome fusion. Finally, we find that other cathepsins may also contribute to proper autolysosomal degradation in larval midgut cells. Our findings provide evidence that cathepsins play an essential role in the autolysosome to maintain basal autophagy flux by balancing autophagosome production and turnover. 26-29-p: 26-29kD-proteinase; ADCD: autophagy-dependent cell death; Atg8a: Autophagy-related protein 8a; Cysteine proteinase-1; CtsB: Cathepsin B; cathepsin D; Cathepsin F; GFP: green fluorescent protein; LAMP1: lysosomal-associated membrane protein 1; Mitf: microphthalmia associated transcription factor; PCA: principal component analysis; RNAi: RNA interference; RPF: relative to puparium formation.
自噬是一种重要的溶酶体降解途径,对于维持细胞内环境稳定至关重要。我们目前对自噬的了解主要集中在这个过程的起始步骤上。最近,人们对后续步骤,特别是导致自噬溶酶体形成的溶酶体融合,以及随后溶酶体酶在降解和再循环中的作用有了更清晰的认识。自噬可以在细胞存活和细胞死亡中发挥作用,但是,区分适应性/存活自噬和自噬依赖性细胞死亡的机制仍有待建立。在这里,我们通过对幼虫中肠降解过程中的蛋白质组学分析,鉴定出一组具有肽酶活性的蛋白质,这表明它们在自噬依赖性细胞死亡中发挥作用。我们发现,由于自噬流受阻, 缺陷的幼虫中肠细胞会积累异常的自噬小泡,但中肠降解的后期阶段并未受到影响。在没有 的情况下,大量异常自噬溶酶体的积累似乎是由于降解能力下降的结果,因为它们含有未消化的细胞质物质,而不是自噬体-溶酶体融合的缺陷。最后,我们发现其他组织蛋白酶也可能有助于 幼虫中肠细胞中适当的自噬溶酶体降解。我们的研究结果提供了证据表明,组织蛋白酶在自噬溶酶体中发挥着重要作用,通过平衡自噬体的产生和周转,维持基础自噬流。