Suppr超能文献

微流控传感系统与多通道表面等离子体共振芯片:通过模式识别实现对细胞的无损特征分析。

Microfluidic Sensing System with a Multichannel Surface Plasmon Resonance Chip: Damage-Free Characterization of Cells by Pattern Recognition.

机构信息

Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.

DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

出版信息

Anal Chem. 2020 Nov 17;92(22):14939-14946. doi: 10.1021/acs.analchem.0c02220. Epub 2020 Oct 28.

Abstract

The development of a versatile sensing strategy for the damage-free characterization of cultured cells is of great importance for both fundamental biological research and industrial applications. Here, we present a pattern-recognition-based cell-sensing approach using a multichannel surface plasmon resonance (SPR) chip. The chip, in which five cysteine derivatives with different structures are immobilized on Au films, is capable of generating five unique SPR sensorgrams for the cell-secreted molecules that are contained in cell culture media. An automatic statistical program was built to acquire kinetic parameters from the SPR sensorgrams and to select optimal parameters as "pattern information" for subsequent multivariate analysis. Our system rapidly (∼10 min) provides the complex information by merely depositing a small amount of cell culture media (∼25 μL) onto the chip, and the amount of information obtained is comparable to that furnished by a combination of conventional laborious biochemical assays. This noninvasive pattern-recognition-based cell-sensing approach could potentially be employed as a versatile tool for characterizing cells.

摘要

开发一种通用的传感策略,用于无损表征培养细胞,对于基础生物学研究和工业应用都非常重要。在这里,我们提出了一种基于模式识别的细胞传感方法,使用多通道表面等离子体共振(SPR)芯片。该芯片将五种具有不同结构的半胱氨酸衍生物固定在 Au 膜上,能够为细胞培养液中包含的细胞分泌分子生成五个独特的 SPR 传感器图谱。我们构建了一个自动统计程序,从 SPR 传感器图谱中获取动力学参数,并选择最佳参数作为后续多元分析的“模式信息”。我们的系统仅需将少量细胞培养液(约 25 μL)沉积在芯片上,就能快速(约 10 分钟)提供复杂信息,并且获得的信息量与传统繁琐的生化分析组合提供的信息量相当。这种基于无损伤模式识别的细胞传感方法可能成为一种通用的细胞特征分析工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验