Tomita Shunsuke, Kusada Hiroyuki, Kojima Naoshi, Ishihara Sayaka, Miyazaki Koyomi, Tamaki Hideyuki, Kurita Ryoji
Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology 1-1-1 Higashi Tsukuba Ibaraki 305-8566 Japan
DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), DBT-AIST International Center for Translational & Environmental Research (DAICENTER) Japan.
Chem Sci. 2022 Apr 26;13(20):5830-5837. doi: 10.1039/d2sc00510g. eCollection 2022 May 25.
Gut-microbiota analysis has been recognized as crucial in health management and disease treatment. Metagenomics, a current standard examination method for the gut microbiome, is effective but requires both expertise and significant amounts of general resources. Here, we show highly accessible sensing systems based on the so-called chemical-nose strategy to transduce the characteristics of microbiota into fluorescence patterns. The fluorescence patterns, generated by twelve block copolymers with aggregation-induced emission (AIE) units, were analyzed using pattern-recognition algorithms, which identified 16 intestinal bacterial strains in a way that correlates with their genome-based taxonomic classification. Importantly, the chemical noses classified artificial models of obesity-associated gut microbiota, and further succeeded in detecting sleep disorder in mice through comparative analysis of normal and abnormal mouse gut microbiota. Our techniques thus allow analyzing complex bacterial samples far more quickly, simply, and inexpensively than common metagenome-based methods, which offers a powerful and complementary tool for the practical analysis of the gut microbiome.
肠道微生物群分析已被认为在健康管理和疾病治疗中至关重要。宏基因组学是目前肠道微生物组的标准检测方法,它虽然有效,但需要专业知识和大量的一般资源。在这里,我们展示了基于所谓化学鼻策略的高度可及的传感系统,以将微生物群的特征转化为荧光模式。使用模式识别算法分析了由十二种具有聚集诱导发光(AIE)单元的嵌段共聚物产生的荧光模式,该算法以与基于基因组的分类学分类相关的方式识别了16种肠道细菌菌株。重要的是,化学鼻对肥胖相关肠道微生物群的人工模型进行了分类,并通过对正常和异常小鼠肠道微生物群的比较分析,进一步成功检测出小鼠的睡眠障碍。因此,我们的技术比基于宏基因组的常见方法能够更快、更简单且更廉价地分析复杂的细菌样本,为肠道微生物组的实际分析提供了一个强大的补充工具。