Suppr超能文献

生物炭负载纳米铁活化过硫酸盐降解水体中的四环素。

Degradation of tetracycline in water by biochar supported nanosized iron activated persulfate.

机构信息

Department of Environmental Science, China Pharmaceutical University, #639 Longmian Avenue, Jiangning District, Nanjing, 211198, China.

Department of Environmental Science, China Pharmaceutical University, #639 Longmian Avenue, Jiangning District, Nanjing, 211198, China; The Brook Byer Institute for Sustainable Systems, Georgia Institute of Technology, 828 West Peachtree Street NW, Atlanta, 30332, Georgia, United States.

出版信息

Chemosphere. 2020 Dec;261:127844. doi: 10.1016/j.chemosphere.2020.127844. Epub 2020 Aug 26.

Abstract

Biochar supported nanosized iron (nFe(0)/BC) was synthesized and used as a persulfate (PS) activator to degradation tetracycline (TC). The influence of the initial pH values, PS and nFe(0)/BC dosage, initial TC concentration, and coexist anions were investigated. In the nFe(0)/BC-PS system, TC could be effectively removed at various pH values (3.0-9.0). The degradation efficiency of TC (100 mg/L) was 97.68% using nFe(0)/BC (0.4 g/L) and persulfate (1 mM) at pH 5.0. Coexisting ions (HCO and NO) had an inhibitory effect on TC degradation. The removal of TC could be fitted by a pseudo-second-order model. Electron-Spin Resonance (ESR) analysis and scavenging tests suggested that sulfate radicals (SO·) and hydroxyl radicals (HO·) were responsible for TC degradation. Details of the advanced oxidation process (AOP)-induced degradation pathways of TC were determined based on liquid chromatography mass-spectrometry (LC-MS) analysis. The nFe(0)/BC could still maintain 86.38% of its original removal capacity after five cycles. The findings of this study proved that nFe(0)/BC can be applied to activate PS for the treatment of pollution caused by TC.

摘要

生物炭负载纳米零价铁(nFe(0)/BC)被合成并用作过硫酸盐(PS)的活化剂来降解四环素(TC)。考察了初始 pH 值、PS 和 nFe(0)/BC 用量、初始 TC 浓度和共存阴离子的影响。在 nFe(0)/BC-PS 体系中,TC 可以在各种 pH 值(3.0-9.0)下有效去除。在 pH 值为 5.0 时,使用 0.4 g/L 的 nFe(0)/BC 和 1 mM 的过硫酸盐(PS),TC(100 mg/L)的降解效率达到 97.68%。共存离子(HCO 和 NO)对 TC 降解有抑制作用。TC 的去除可以用拟二级动力学模型拟合。电子自旋共振(ESR)分析和清除实验表明,硫酸根自由基(SO·)和羟基自由基(HO·)是 TC 降解的主要活性物种。根据液相色谱质谱联用(LC-MS)分析,确定了 AOP 诱导的 TC 降解途径的详细信息。nFe(0)/BC 在经过五次循环后仍能保持其原始去除能力的 86.38%。本研究结果证明,nFe(0)/BC 可用于激活 PS 来处理 TC 污染。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验