Laboratory of Anatomy of Domestic Animal, College of Veterinary Medicine, China Agricultural University , Beijing, China.
Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University , Datong, China.
Chronobiol Int. 2020 Dec;37(12):1677-1692. doi: 10.1080/07420528.2020.1830790. Epub 2020 Oct 28.
As the circadian pacemaker of birds, the retina possesses the ability to receive light information, generate circadian oscillation, and secrete melatonin. Previous studies have confirmed that monochromatic green light can accelerate the circadian rhythmic expression of clock genes in the chick retina, thereby increasing mRNA level and melatonin secretion. However, as the core components of the transcriptional-translational negative feedback loop, the role that and plays in the regulation of the retinal molecular clock system and melatonin secretion under monochromatic green light is unknown. To explore their in these processes, embryonic chick retinal cells at six embryo ages were isolated and cultured under light-dark (LD) 12:12 monochromatic green light with, and the role of and in the regulation of the retinal molecular clock and melatonin secretion in the chick retina was explored by siRNA interference and overexpression. The results showed siRNA interference and overexpression of obliterated the circadian rhythm of , and melatonin secretion. Moreover, the siRNA interference of significantly reduced the average expression levels of the positive clock genes and , positive clock protein CLOCK, negative clock genes , as well as and retinal melatonin. The over-expression of increased the average levels of the above-detected targets. However, siRNA interference and overexpression of did not change the rhythm of all of the clock genes, clock proteins, , and melatonin secretion, while it only affected the circadian mesors (24 h time series means), amplitudes, and acrophases (peak times) of , and melatonin, as well as the average levels of arrhythmic and . Moreover, interference and overexpression of did not affect mRNA level and BMAL1 protein expression. The above results reveal interference and overexpression of completely abolished the molecular circadian oscillation and the rhythm of melatonin output signal of chick retinal cells, indicating that is on the top of the avian retinal molecular clock feedback loop and regulates the downstream molecular clock oscillation and output under monochromatic green light. plays a subordinate role in maintaining the circadian oscillation of the molecular clock and melatonin secretion in retinal cells, and it has a stabilizing and amplifying effect on molecular clock oscillation.
作为鸟类的生物钟起搏器,视网膜具有接收光信息、产生生物钟振荡和分泌褪黑素的能力。先前的研究已经证实,单色绿光可以加速雏鸡视网膜时钟基因的生物钟节律表达,从而增加 mRNA 水平和褪黑素分泌。然而,作为转录-翻译负反馈环的核心组成部分, 和 在单色绿光下调节视网膜分子钟系统和褪黑素分泌的作用尚不清楚。为了探讨它们在这些过程中的作用,在光照-黑暗(LD)12:12 的单色绿光下,分离和培养了六个胚胎龄的胚胎鸡视网膜细胞,并用 siRNA 干扰和过表达探索了 和 在调节鸡视网膜分子钟和褪黑素分泌中的作用。结果表明,siRNA 干扰和过表达 消除了 和褪黑素分泌的昼夜节律。此外, 的 siRNA 干扰显著降低了正时钟基因 和 、正时钟蛋白 CLOCK、负时钟基因 和 以及视网膜褪黑素的平均表达水平。 的过表达增加了上述检测到的靶基因的平均水平。然而, 的 siRNA 干扰和过表达并没有改变所有时钟基因、时钟蛋白、 和褪黑素的节律,而只影响了 和褪黑素的昼夜中值(24 小时时间序列平均值)、振幅和峰时(峰值时间),以及非节律性 和 的平均水平。此外, 的干扰和过表达并不影响 mRNA 水平和 BMAL1 蛋白表达。上述结果表明, 的干扰和过表达完全消除了鸡视网膜细胞的分子生物钟振荡和褪黑素输出信号的节律,表明 在鸟类视网膜分子钟反馈环的顶端,并调节单色绿光下下游分子钟振荡和输出。 在维持视网膜细胞分子钟振荡和褪黑素分泌的昼夜节律中起次要作用,对分子钟振荡具有稳定和放大作用。