Suppr超能文献

饮食多样性与最早飞行脊椎动物的演化:牙齿微磨损纹理分析的启示。

Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis.

机构信息

Centre for Palaeobiology Research, School of Geography, Geology and the Environment, University of Leicester, Leicester, LE1 7RH, UK.

School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

出版信息

Nat Commun. 2020 Oct 28;11(1):5293. doi: 10.1038/s41467-020-19022-2.

Abstract

Pterosaurs, the first vertebrates to evolve active flight, lived between 210 and 66 million years ago. They were important components of Mesozoic ecosystems, and reconstructing pterosaur diets is vital for understanding their origins, their roles within Mesozoic food webs and the impact of other flying vertebrates (i.e. birds) on their evolution. However, pterosaur dietary hypotheses are poorly constrained as most rely on morphological-functional analogies. Here we constrain the diets of 17 pterosaur genera by applying dental microwear texture analysis to the three-dimensional sub-micrometre scale tooth textures that formed during food consumption. We reveal broad patterns of dietary diversity (e.g. Dimorphodon as a vertebrate consumer; Austriadactylus as a consumer of 'hard' invertebrates) and direct evidence of sympatric niche partitioning (Rhamphorhynchus as a piscivore; Pterodactylus as a generalist invertebrate consumer). We propose that the ancestral pterosaur diet was dominated by invertebrates and later pterosaurs evolved into piscivores and carnivores, shifts that might reflect ecological displacements due to pterosaur-bird competition.

摘要

翼龙是最早进化出主动飞行能力的脊椎动物,生活在 2.10 亿至 6600 万年前。它们是中生代生态系统的重要组成部分,重建翼龙的饮食结构对于理解它们的起源、它们在中生代食物网中的作用以及其他飞行脊椎动物(如鸟类)对它们进化的影响至关重要。然而,翼龙的饮食假说受到很大限制,因为大多数假说依赖于形态-功能类比。在这里,我们通过对在食物摄入过程中形成的三维亚微米尺度牙齿纹理进行牙齿微磨损纹理分析,来限制 17 种翼龙属的饮食。我们揭示了饮食多样性的广泛模式(例如,双型齿翼龙是脊椎动物的消费者;澳齿龙是“硬”无脊椎动物的消费者),并提供了直接的证据证明了同域生态位分化(喙嘴翼龙是鱼类捕食者;翼手龙是无脊椎动物的杂食者)。我们提出,祖先进化的翼龙饮食以无脊椎动物为主,后来翼龙进化为鱼类捕食者和肉食者,这些变化可能反映了由于翼龙-鸟类竞争导致的生态取代。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d93/7595196/362e5af4f312/41467_2020_19022_Fig1_HTML.jpg

相似文献

2
Pterosaur dietary hypotheses: a review of ideas and approaches.
Biol Rev Camb Philos Soc. 2018 Nov;93(4):2021-2048. doi: 10.1111/brv.12431. Epub 2018 Jun 7.
5
How the pterosaur got its wings.
Biol Rev Camb Philos Soc. 2015 Nov;90(4):1163-78. doi: 10.1111/brv.12150. Epub 2014 Oct 31.
6
Respiratory evolution facilitated the origin of pterosaur flight and aerial gigantism.
PLoS One. 2009;4(2):e4497. doi: 10.1371/journal.pone.0004497. Epub 2009 Feb 18.
7
The shape of pterosaur evolution: evidence from the fossil record.
J Evol Biol. 2009 Apr;22(4):890-8. doi: 10.1111/j.1420-9101.2008.01682.x. Epub 2009 Jan 29.
10
Dietary specializations and diversity in feeding ecology of the earliest stem mammals.
Nature. 2014 Aug 21;512(7514):303-5. doi: 10.1038/nature13622.

引用本文的文献

3
A giant specimen of and comments on the ontogeny of rhamphorhynchines.
PeerJ. 2025 Jan 2;13:e18587. doi: 10.7717/peerj.18587. eCollection 2025.
5
Enhanced flight performance and adaptive evolution of Mesozoic giant cicadas.
Sci Adv. 2024 Oct 25;10(43):eadr2201. doi: 10.1126/sciadv.adr2201.
6
Intraspecific variation in the pterosaur implications for flight and socio-sexual signaling.
PeerJ. 2024 Jul 18;12:e17524. doi: 10.7717/peerj.17524. eCollection 2024.
7
Haliskia peterseni, a new anhanguerian pterosaur from the late Early Cretaceous of Australia.
Sci Rep. 2024 Jun 12;14(1):11789. doi: 10.1038/s41598-024-60889-8.
9
Three-dimensional dental microwear in type-Maastrichtian mosasaur teeth (Reptilia, Squamata).
Sci Rep. 2023 Nov 9;13(1):18720. doi: 10.1038/s41598-023-42369-7.

本文引用的文献

1
Pterosaurs ate soft-bodied cephalopods (Coleoidea).
Sci Rep. 2020 Jan 27;10(1):1230. doi: 10.1038/s41598-020-57731-2.
4
Pterosaur dietary hypotheses: a review of ideas and approaches.
Biol Rev Camb Philos Soc. 2018 Nov;93(4):2021-2048. doi: 10.1111/brv.12431. Epub 2018 Jun 7.
5
Earliest filter-feeding pterosaur from the Jurassic of China and ecological evolution of Pterodactyloidea.
R Soc Open Sci. 2017 Feb 1;4(2):160672. doi: 10.1098/rsos.160672. eCollection 2017 Feb.
6
8
Preservational bias controls the fossil record of pterosaurs.
Palaeontology. 2016 Jan 14;59(2):225-247. doi: 10.1111/pala.12225.
10
A specimen of Rhamphorhynchus with soft tissue preservation, stomach contents and a putative coprolite.
PeerJ. 2015 Aug 20;3:e1191. doi: 10.7717/peerj.1191. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验