Suppr超能文献

贝叶斯统计理论在肺部病变术前诊断中的应用

Bayesian statistical theory in the preoperative diagnosis of pulmonary lesions.

作者信息

Edwards F H, Schaefer P S, Callahan S, Graeber G M, Albus R A

机构信息

Walter Reed Army Medical Center, Department of Cardiothoracic Surgery, Washington, DC 20307-5100.

出版信息

Chest. 1987 Nov;92(5):888-91. doi: 10.1378/chest.92.5.888.

Abstract

We used a computerized Bayesian algorithm to assist in the preoperative diagnosis of pulmonary lesions. One hundred consecutive patients who were undergoing exploratory thoracotomy for newly discovered pulmonary lesions were prospectively evaluated. The Bayesian model used a total of 44 preoperative clinical and roentgenographic factors to categorize the lesions as benign or malignant. The Bayesian algorithm correctly categorized 96 of the 100 lesions, thereby providing an accuracy of 96 percent. The sensitivity of the model was 98 percent and the specificity was 87 percent. All but two of the 85 malignant lesions were correctly categorized and 13 of the 15 benign lesions were correctly analyzed by the model. These results indicate that computer-assisted diagnosis using the Theorem of Bayes may provide valuable preoperative information for the management of selected patients.

摘要

我们使用一种计算机化的贝叶斯算法来辅助肺部病变的术前诊断。对连续100例因新发现的肺部病变而接受 exploratory thoracotomy(开胸探查术)的患者进行了前瞻性评估。贝叶斯模型使用了总共44个术前临床和影像学因素将病变分类为良性或恶性。贝叶斯算法正确地对100个病变中的96个进行了分类,从而提供了96%的准确率。该模型的敏感性为98%,特异性为87%。85个恶性病变中除两个外均被正确分类,15个良性病变中有13个被该模型正确分析。这些结果表明,使用贝叶斯定理的计算机辅助诊断可为特定患者的管理提供有价值的术前信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验