Suppr超能文献

孤立性肺结节:通过神经网络分析确定恶性可能性

Solitary pulmonary nodules: determining the likelihood of malignancy with neural network analysis.

作者信息

Gurney J W, Swensen S J

机构信息

Department of Radiology, University of Nebraska Medical Center, Omaha 68198-1045, USA.

出版信息

Radiology. 1995 Sep;196(3):823-9. doi: 10.1148/radiology.196.3.7644650.

Abstract

PURPOSE

To test a neural network in differentiation of benign from malignant solitary pulmonary nodules.

MATERIALS AND METHODS

Neural networks were trained and tested on the characteristics of 318 nodules. Predictive accuracy of the network was judged for calibration and discrimination. Network results were compared with those with a simpler Bayesian method.

RESULTS

The Brier score was 0.142 (calibration, 0.003; discrimination, 0.139) for the neural network and 0.133 for the Bayesian analysis (calibration, 0.012; discrimination, 0.121). Analysis of the calibration curve revealed no significant difference (P < .05) between the slope (b = 1.09) and the line of identity (b = 1) for the neural network or the Bayesian analysis. The area under the receiver operating characteristic curve was 0.871 for the neural network and 0.894 for the Bayesian analysis (P < .05). There were 23 and 21 false-positive predictions and 18 and six false-negative predictions for the neural network and Bayesian analysis, respectively.

CONCLUSION

The Bayesian method was better than the neural network in prediction of probability of malignancy in solitary pulmonary nodules.

摘要

目的

测试神经网络在鉴别孤立性肺结节的良恶性方面的性能。

材料与方法

基于318个结节的特征对神经网络进行训练和测试。通过校准和区分来判断网络的预测准确性。将网络结果与一种更简单的贝叶斯方法的结果进行比较。

结果

神经网络的布里尔评分是0.142(校准,0.003;区分,0.139),贝叶斯分析的布里尔评分为0.133(校准,0.012;区分,0.121)。校准曲线分析显示,神经网络或贝叶斯分析的斜率(b = 1.09)与恒等线(b = 1)之间无显著差异(P <.05)。神经网络的受试者操作特征曲线下面积为0.871,贝叶斯分析为0.894(P <.05)。神经网络和贝叶斯分析的假阳性预测分别为23例和21例,假阴性预测分别为18例和6例。

结论

在预测孤立性肺结节的恶性概率方面,贝叶斯方法优于神经网络。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验