Ferreira Marcel Rodrigues, Milani Renato, Rangel Elidiane C, Peppelenbosch Maikel, Zambuzzi Willian
Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), São Paulo, Brazil.
Bioquímica e Biologia Tecidual, Biology Institute, Universidade de Campinas (UNICAMP), São Paulo, Brazil.
Front Bioeng Biotechnol. 2020 Oct 8;8:565901. doi: 10.3389/fbioe.2020.565901. eCollection 2020.
For bone purposes, surface modifications are a common trend in biomaterials research aiming to reduce the time necessary for osteointegration, culminating in faster recovery of patients. In this scenario, analysis of intracellular signaling pathways have emerged as an important and reliable strategy to predict biological responses from approaches. We have combined global analysis of intracellular protein phosphorylation, systems biology and bioinformatics into an early biomaterial analysis routine called OsteoBLAST. We employed the routine as follows: the PamChip tyrosine kinase assay was applied to mesenchymal stem cells grown on three distinct titanium surfaces: machined, dual acid-etched and nanoHA. Then, OsteoBLAST was able to identify the most reliable spots to further obtain the differential kinome profile and finally to allow a comparison among the different surfaces. Thereafter, NetworKIN, STRING, and Cytoscape were used to build and analyze a supramolecular protein-protein interaction network, and DAVID tools identified biological signatures in the differential kinome for each surface.
就骨骼方面而言,表面改性是生物材料研究中的一个常见趋势,旨在减少骨整合所需的时间,最终实现患者更快康复。在这种情况下,细胞内信号通路分析已成为预测各种方法生物学反应的一种重要且可靠的策略。我们将细胞内蛋白质磷酸化的全局分析、系统生物学和生物信息学结合到一种名为OsteoBLAST的早期生物材料分析程序中。我们按如下方式使用该程序:将PamChip酪氨酸激酶测定法应用于在三种不同钛表面生长的间充质干细胞,这三种表面分别是机械加工表面、双重酸蚀表面和纳米羟基磷灰石表面。然后,OsteoBLAST能够识别出最可靠的位点,以进一步获得差异激酶组图谱,并最终对不同表面进行比较。此后,使用NetworKIN、STRING和Cytoscape构建并分析超分子蛋白质 - 蛋白质相互作用网络,DAVID工具识别出每个表面差异激酶组中的生物学特征。