Suppr超能文献

原发性进行性失语和行为变异型额颞叶痴呆中自发语言的自动剖析:一种基于使用频率的方法。

Automated profiling of spontaneous speech in primary progressive aphasia and behavioral-variant frontotemporal dementia: An approach based on usage-frequency.

作者信息

Zimmerer Vitor C, Hardy Chris J D, Eastman James, Dutta Sonali, Varnet Leo, Bond Rebecca L, Russell Lucy, Rohrer Jonathan D, Warren Jason D, Varley Rosemary A

机构信息

University College London, Department of Language and Cognition, London, United Kingdom.

University College London, Dementia Research Centre, London, United Kingdom.

出版信息

Cortex. 2020 Dec;133:103-119. doi: 10.1016/j.cortex.2020.08.027. Epub 2020 Sep 22.

Abstract

Language production provides important markers of neurological health. One feature of impairments of language and cognition, such as those that occur in stroke aphasia or Alzheimer's disease, is an overuse of high frequency, "familiar" expressions. We used computerized analysis to profile narrative speech samples from speakers with variants of frontotemporal dementia (FTD), including subtypes of primary progressive aphasia (PPA). Analysis was performed on language samples from 29 speakers with semantic variant PPA (svPPA), 25 speakers with logopenic variant PPA (lvPPA), 34 speakers with non-fluent variant PPA (nfvPPA), 14 speakers with behavioral variant FTD (bvFTD) and 20 older normal controls (NCs). We used frequency and collocation strength measures to determine use of familiar words and word combinations. We also computed word counts, content word ratio and a combination ratio, a measure of the degree to which the individual produces connected language. All dementia subtypes differed significantly from NCs. The most discriminating variables were word count, combination ratio, and content word ratio, each of which distinguished at least one dementia group from NCs. All participants with PPA, but not participants with bvFTD, produced significantly more frequent forms at the level of content words, word combinations, or both. Each dementia group differed from the others on at least one variable, and language production variables correlated with established behavioral measures of disease progression. A machine learning classifier, using narrative speech variables, achieved 90% accuracy when classifying samples as NC or dementia, and 59.4% accuracy when matching samples to their diagnostic group. Automated quantification of spontaneous speech in both language-led and non-language led dementias, is feasible. It allows extraction of syndromic profiles that complement those derived from standardized tests, warranting further evaluation as candidate biomarkers. Inclusion of frequency-based language variables benefits profiling and classification.

摘要

语言产出为神经健康提供了重要指标。语言和认知障碍的一个特征,比如在中风性失语症或阿尔茨海默病中出现的那些,是高频、“常见”表达的过度使用。我们使用计算机化分析来剖析来自患有额颞叶痴呆(FTD)变体的说话者的叙述性言语样本,包括原发性进行性失语症(PPA)的亚型。对来自29名患有语义变异型PPA(svPPA)、25名患有音韵变异型PPA(lvPPA)、34名患有非流利变异型PPA(nfvPPA)、14名患有行为变异型FTD(bvFTD)的说话者以及20名老年正常对照(NCs)的语言样本进行了分析。我们使用频率和搭配强度测量来确定常见词汇和词汇组合的使用情况。我们还计算了单词计数、实词比率和组合比率,组合比率是衡量个体产出连贯语言程度的指标。所有痴呆亚型与正常对照均有显著差异。最具区分性的变量是单词计数、组合比率和实词比率,每一个变量都能将至少一个痴呆组与正常对照区分开来。所有患有PPA的参与者,但不包括患有bvFTD的参与者,在实词、词汇组合或两者层面上产生的高频形式显著更多。每个痴呆组在至少一个变量上与其他组不同,并且语言产出产出产出变量与既定的疾病进展行为测量指标相关。一个使用叙述性言语变量的机器学习分类器,在将样本分类为正常对照或痴呆时准确率达到90%,在将样本与其诊断组匹配时准确率为59.4%。在以语言为主导和非语言为主导的痴呆中,对自发言语进行自动量化是可行的。它能够提取补充来自标准化测试的综合征特征,作为候选生物标志物值得进一步评估。纳入基于频率的语言变量有利于特征分析和分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验